Ciprofloxacin (CIP) is an antibiotic drug frequently detected in manure compost and is difficult to decompose at high temperatures, resulting in a potential threat to the environment. Microbial degradation is an effective and environmentally friendly method to degrade CIP. In this study, a thermophilic bacterium that can degrade CIP was isolated from sludge sampled from an antibiotics pharmaceutical factory. This strain is closely related to Thermus thermophilus based on 16S rRNA gene sequence analysis and is designated C419. The optimal temperature and pH values for CIP degradation are 70 °C and 6.5, respectively, and an appropriate sodium acetate concentration promotes CIP degradation. Seven major biodegradation metabolites were identified by an ultra-performance liquid chromatography tandem mass spectrometry analysis. In addition, strain C419 degraded other fluoroquinolones, including ofloxacin, norfloxacin and enrofloxacin. The supernatant from the C419 culture grown in fluoroquinolone-containing media showed attenuated antibacterial activity. These results indicate that strain C419 might be a new auxiliary bacterial resource for the biodegradation of fluoroquinolone residue in thermal environments.