There is growing evidence that polychlorinated biphenyl 126 (PCB126) not only has adverse effects on host health but also has the ability to shift gut microbiota, which is recently recognized as a crucial factor determining numerous physiological processes. However, the interplay between the gut microbiota and host health remains largely unknown. Herein, adult female C57BL/6 mice were orally exposed to environmentally relevant low-dose of PCB126, at 50μg/kg body weight once per week for 6 weeks. This study aims to illuminate how PCB126 influences gut microbiota variations and host disorders and to further identify the correlation between the gut microbiota and metabolic markers of host disorders. Obtained results demonstrated that the PCB126 administration induced gut microbiota dysbiosis in mice, with changes both in the gut microbiota constitution and structure. PCB126 administration also simultaneously altered the physiological status of serum and liver, as evaluated by dyslipidemia, liver lipid accumulation and injury, and non-alcoholic fatty liver disease. Importantly, Spearman's correlation analysis suggested that several specific bacterial taxa were positively and significantly related to metabolic markers of the mentioned disorders. Moreover, based on the co-occurrence network map, some of the bacterial taxa may synergistically regulate host physiology. This work provides new insight into the mechanism underlying the interaction between the gut microbiota and host disorders. It is expected that gut microbiota modulation should be another novel way used for the prevention and treatment of PCB126-triggered diseases.