Textile dyeing sludge (TDS) was pyrolyzed at temperature ranging from 300 to 700 °C to investigate characteristics and to evaluate the risk of heavy metals (Zn, Cu, Cr, Ni, Cd, and Mn) in biochar derived from the TDS. The analyzation of characteristics and potential environmental risk evaluation of heavy metals were conducted by the BET-N2, FTIR, and BCR sequential extraction procedure. The results showed that the pyrolysis treatment of the TDS contributed to the improvement of the pH value and specific surface areas with increasing pyrolysis temperature. Conversion of the TDS to biochar significantly decreased the H/C and O/C ratios, resulting in a far stronger carbonization and a higher aromatic condensation for the TDS derived biochar. The total contents of Zn, Cu, Cr, Ni and Mn in biochar increased with pyrolysis temperature owing to the thermal decomposition of organic matter in the TDS; but for Cd, the portion distributed in the biochars decreased significantly when the temperature increased up to 600 °C. However, using BCR sequential extraction procedure and analysis, it was found that pyrolysis process promoted changes in the chemical speciation and biochar matrix characteristics, leading to reduce bio-available fractions of heavy metals in the biochars. The potential environmental risk of heavy metals decreased from considerable risk in the TDS to low risk or no risk in biochar after pyrolysis above 400 °C. This work demonstrated that the pyrolysis process was a promising method for disposing of the TDS with acceptable environment risk.