The importance of the gut microbiome to host health is well recognized, but the effects of environmental pressures on the gut microbiome of soil fauna are poorly understood. Here, Illumina sequencing and high-throughput qPCR were applied to characterize the gut microbiomes and resistomes of two mites, Nenteria moseri and Chiropturopoda sp. AL5866, exposed to different concentrations of oxytetracycline (0, 0.01, 0.1 and 1 μg mg-1). Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the dominant phyla in the gut microbiomes of both studied mite species, but the relative abundance of them was different between mites. After exposure to oxytetracycline, there was no variation in the gut microbiome and resistome of C. sp. AL5866, whereas the gut microbiome and resistome of N. moseri were altered significantly. The relative abundance of Proteobacteria significantly decreased, and those of Bacteroidetes and Firmicutes significantly increased at the high-concentration antibiotic treatments. Excepting the 0.01 μg mg-1 treatment, gut microbial diversity increased with ascending concentrations. A significant resistome enrichment of relative abundance in N. moseri gut microbiome at low-dose antibiotic treatment was noted. These results indicated that the gut microbiome in N. moseri was potentially more sensitive to antibiotics than C. sp. AL5866, which was supported by the greater relative abundance of key tetracycline-resistant genes in the gut microbiome of C. sp. AL5866 compared to N. moseri. Mite gut microbiomes were correlated with their associated resistomes, demonstrating the consistent changes between microbiome and resistome. Thus, this study showed that oxytetracycline amendment resulted in a dose-dependent and species-specific effect on the gut microbiomes and resistomes of two mite species. It will contribute to understanding the relationship between the soil mite gut microbiome and resistome under antibiotic exposure, and extend our knowledge regarding the emergence and transfer of resistomes in soil food webs.