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A B S T R A C T

Background: Exposure to airborne fine particulate matter (PM2.5) has been associated with a variety of adverse
health outcomes including chronic obstructive pulmonary disease (COPD). However, the linkages between PM2.5

exposure, PM2.5-related biomarkers, COPD-related biomarkers and COPD remain poorly elucidated.
Objectives: To investigate the linkages between PM2.5 exposure and COPD outcome by using the meet-in-middle
strategy based on urinary metabolic biomarkers.
Methods: A cross-sectional study was designed to illustrate the mentioned quadripartite linkages. Indoor PM2.5

and its element components were assessed in 41 Chinese elderly participants including COPD patients and their
healthy spouses. Metabolic biomarkers involved in PM2.5 exposure and COPD were identified by using urinary
metabolomics. The associations between PM2.5- and COPD-related biomarkers were investigated by statistics and
metabolic pathway analysis.
Results: Seven metabolites were screened and identified with significant correlations to PM2.5 exposure, which
were majorly involved in purine and amino acid metabolism as well as glycolysis. Ten COPD-related metabolic
biomarkers were identified, which suggested that amino acid metabolism, lipid and fatty acid metabolism, and
glucose metabolism were disturbed in the patients. Also, PM2.5 and its many elemental components were sig-
nificantly associated with COPD-related biomarkers. We observed that the two kinds of biomarkers (PM2.5- and
COPD-related) integrated in a locally connected network and the alterations of these metabolic biomarkers can
biologically link PM2.5 exposure to COPD outcome.
Conclusions: Our study indicated the modification of PM2.5 to COPD via both modes of action of lowering
participants' antioxidation capacity and decreasing their lung energy generation; this information would be
valuable for the prevention strategy of COPD.

1. Introduction

In recent years, the atmospheric pollution of particulate matter
(PM) with an aerodynamic diameter< 2.5 μm (PM2.5) has been of great
concern in China. Due to its small size, PM2.5 can penetrate deeply into
the respiratory tract and reach alveolar ducts, and firstly would target
the lung organ and consequently induce the adverse effects in the other
parts in human body. Extensive epidemiological studies have linked
ambient PM2.5 exposure with a variety of adverse outcomes, including
pulmonary and cardiovascular impairments, infertility, adverse birth
effect and carcinogenesis (Stockfelt et al., 2017; Carré et al., 2017; Ha

et al., 2014; Gharibvand et al., 2017). Chronic obstructive pulmonary
disease (COPD) is a severe pulmonary dysfunction and is a leading
cause of morbidity and mortality worldwide, which has been associated
with the exposure to PM2.5 (Guo et al., 2018; Lin et al., 2018; Pan et al.,
2018). PM2.5 was related to increased COPD-related hospital visits, each
10 μg/m3 increase of PM2.5 exposure would cause a 0.23% increase of
the total emergency room visits of respiratory diseases and patients
exhibited acute exacerbation of COPD (Jo et al., 2018; Liu et al., 2018).
However, few human studies have addressed the molecular linkage
behind the statistic correlation between PM2.5 and COPD due to the
“black-box” character of the traditional epidemiology approach.
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Human metabolites are the endpoints of many enzyme (protein)
actions, which may reflect the final consequences of the functional
changes induced by both environmental stimulation and disease stress.
Metabolic biomarkers, therefore, can provide some biological in-
formation to map the potential pathway of the environmental risk
factor-related adverse outcomes. Metabolomics is one of the high-
throughput omics approaches that are powerful to screen both en-
vironmental factor- and health outcome-related biomarkers quantified
with no priori hypothesis. Some studies from our group and others have
demonstrated that PM2.5 exposure can cause many important metabolic
pathway changes in the models of rodents and cell lines (Wang et al.,
2017a; Zhang et al., 2017a, 2017b; Huang et al., 2015). Although these
works have well characterized PM2.5's toxicology, to extrapolate the
laboratory tests to human observation is still a challenge. It is because
PM2.5 is very complex with variable toxic components, and tox-
icological differences between the models and human beings are ex-
pected especially for the short-term exposure and acute effects. Thus,
we suggested that systems epidemiology is plausible to use the meet-in-
middle strategy to identify PM2.5- and COPD-related metabolic altera-
tions and then directly target these phenotypes to COPD outcome based
on human metabolome database (Bonvallot et al., 2014).

To date, many environmental pollutants-related human metabo-
lomic changes and biomarkers have been successfully investigated in
body fluids including urine (Shen et al., 2013; Zhang et al., 2014a,
2016; Wang et al., 2017b) and a few studies have also addressed the
metabolic alterations responsive to PM2.5 exposure. Wei et al. (2013)
revealed that high-dose exposure to PM2.5 is associated with the re-
duction of plasma unsaturated fatty acids in boilermakers. Eight blood
circulating metabolites that linked to lung function were also found to
be significantly associated with the long-term PM exposure in a general
population (Menni et al., 2015). In addition, in cardiac catheterization
patients, a targeted metabolomics study has revealed that the short-
term exposure to ambient PM2.5 was associated with some plasma
metabolite changes, which may improve the understanding of how
PM2.5 increase the cardiovascular risks (Breitner et al., 2016). The
metabolic disturbance has also been associated with COPD in humans
(Kilk et al., 2018; Ghosh et al., 2016). Wang et al. (2013) found a series
of metabolite alterations in COPD patients, and the urinary metabolome
differences were more significant than the serum. Urinary hippurate
and formate were found to be correlated with COPD, which are con-
sidered as important biomarkers for lung function (McClay et al., 2010).

PM2.5 exposure and COPD risk have been associated with specific
metabolic changes separately. In the present study, we hypothesize that
human urinary metabolite continuum can serve as a hub, in which both
PM2.5- and COPD-related metabolic markers may link PM2.5 exposure to
COPD risk directly (Fig. 1). Therefore, we investigated the urinary
metabolic response of Chinese elderly people to indoor PM2.5 exposure
and to COPD risk by using a liquid chromatography/mass spectrometry
(LC/MS)-based metabolomics platform. The purposes are to tentatively

offer an adverse outcome pathway (AOP) analysis for PM2.5-related
COPD in humans and to lead to a better understanding of the toxic
characterization of PM2.5 in modifying the risk of COPD.

2. Materials and methods

2.1. Study participants

A cross-sectional study was conducted from March 2016 to May
2016, and the included 41 Chinese elderly subjects were selected from
an existing cohort based on strict inclusion and exclusion criteria. They
were the volunteers of chronic obstructive pulmonary disease (COPD)
diagnosed patients and their healthy spouses in Beijing. The partici-
pants have not any metabolic diseases and had lived in urban area of
Beijing for more than one year when they were included in the study.
Besides, the COPD patients were all in stable phase during the study.
The Institutional Review Board of Peking University Health Science
Center has approved the study, and a written informed consent was
obtained from each participant before the study began. The data in-
cluding age, gender, BMI, smoking and alcohol drinking status were
collected by questionnaire.

2.2. Indoor PM2.5 sampling and its element component measurement

Because our elderly participants stay nearly all day at home, the
indoor PM2.5 concentrations were used as a surrogate of their en-
vironmental exposure variations. All samplings were carried out in the
participants' houses with a duration of about 22 h (from 8:00–10:00 am
to 6:00–8:00 am of the next day) in spring, 2016 for short-term PM2.5

exposure assessment. The indoor air sampling apparatus was applied
approximately 1.2 m above the floor in the living room, away from the
windows and combustion or any other heat sources. Each sampling
location was equipped with two identical PM samplers fitted with 2 μm
pore size Teflon filters (SKC Inc., Eighty Four, PA, USA), and the
working flow rate was 3 L/min. The Teflon filters were conditioned in a
room with constant temperature (21 ± 2 °C) and relative humidity
(40 ± 5%) for at least 24 h and then weighed using a microbalance
with 0.001mg precision (MSA3.6P-000-DM, Sartorius Lab Instruments
GmbH & Co. KG, Göttingen, Germany) before and after the sampling to
obtain the indoor mass concentrations of PM2.5. In addition, the con-
tents of sodium, calcium, magnesium and sulfur in Teflon filters were
measured by using inductively coupled plasma optical emission spec-
trometry (ICP-OES, model iCAP 6300, Thermo, UK); nickel, vanadium,
zinc, selenium, potassium, cobalt, lead, bromine, arsenic, molybdenum,
cadmium, tin, stibonium, aluminum, titanium, iron, copper, strontium,
barium and manganese contents were determined by using inductively-
coupled plasma mass spectrometry (ICP-MS, model 7700×, Agilent,
USA).

Fig. 1. The study hypothesis of meet-in-metabolite
and flowchart: an adverse outcome pathway analysis
for illustrating PM2.5 exposure-related COPD mod-
ification. PM2.5- and COPD-related metabolic bio-
markers were mined separately, and then their lin-
kages with PM2.5 and COPD were investigated by
taken the urinary metabolism continuum as PM2.5-
COPD communication hub.
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2.3. Urine sampling and metabolome biomarker screening

Since food intake and drinking may result in perturbation of human
metabolome, morning urine samples (collected after 12 h-fasting) have
been commonly used for urinary metabolomics analysis (Shen et al.,
2013; Zhang et al., 2014a; Zhang et al., 2016). Therefore, mid-stream
specimens of morning urine were collected once immediately after
PM2.5 sampling for metabolomics analysis in this study. After collec-
tion, the samples were transported in ice to the Beijing laboratory in
2 h, and then stored in −80 °C prior to delivery to Xiamen laboratory.
The inter-laboratory transportation was conditioned in dry ice and the
samples were stored in −80 °C prior to further analysis.

Details of sample preparation, metabolome profiling acquisition,
data processing and quality control procedures were described in the
Supporting Information. The processed mass feature tables were Pareto-
scaled and introduced to SIMCA-P software (v13.0, Umetrics, Uppsala,
Sweden) for multivariate statistical analysis. Then principal component
analysis (PCA) was performed to cluster the samples, and the outliers
(the samples far away from the cluster center in PCA score plot) were
removed from the dataset.

PM2.5 concentrations were dichotomized with the cut-off of median
and then participants were categorized into the low and high exposure
groups, respectively. A PM2.5 dosage-oriented partial least-squares
discriminant analysis (PLS-DA) model was applied to profile the
trimmed mass features, in which dichotomized PM2.5 concentration was
used as the classifier. Similarly, a COPD-oriented PLS-DA model was
also applied, in which the dichotomic variable COPD (yes or no) was
used as the classifier. The 999-time permutation tests were performed
to validate the developed PLS-DA models. The metabolite biomarker
screening by using the PLS-DA models was based on the following
criteria: 1) variable importance in projection (VIP) value>1.5; 2) jack-
knifing confidence interval> 0; 3) intensity difference of variables
between the low and high PM2.5 exposure groups (or non-COPD and
COPD groups) was significant (p < 0.05). Metabolite identification
was carried out by searching the Human Metabolome Database (HMDB,
http://www.hmdb.ca) based on accurate mass measurement. The ac-
cepted mass difference was set as 20mDa during the search.
Furthermore, the UPLC/MS/MS product ion spectrum of a metabolite
was matched with the MS spectra available in HMDB to confirm the
identification.

2.4. Statistical analysis

The Mann-Whitney nonparametric test was used to evaluate the
inter-group significant difference for each potential biomarker. Partial

correlation analysis was performed to investigate the associations of the
paired biomarkers, the biomarkers with PM2.5, and the biomarkers with
element concentrations of PM2.5, in which the variables of age, gender,
BMI, COPD, past smoking and alcohol drinking status were adjusted.
The effects of the potential markers on COPD were expressed by the
adjusted odds ratios (AORs), and their dose-related trends were ana-
lyzed by using binary logistic regressions, in which the defined out-
comes of COPD and non-COPD were counted based on the dichot-
omized abundance cutoffs of these biomarkers. Furthermore, the
biomarkers' associations with PM2.5 and its components were analyzed
by multivariable linear regression model with adjustment for age,
gender, BMI, COPD, past smoking and alcohol drinking status. The re-
sults were expressed as the percent changes of the biomarkers (with
95% confidence intervals (CI)) per interquartile range (IQR) increase of
the pollutant levels. p < 0.05 was considered as statistically sig-
nificant.

Apart from the above mentioned partial correlation analyses be-
tween the biomarkers, the partial redundancy analysis (pRDA) was
further used to visualize the overview associations between PM2.5- and
COPD-oriented metabolic biomarkers by using CANOCO (Houshyani
et al., 2012). In the multivariate model, PM2.5-related metabolites were
explanatory variables with age and BMI as cofactors and COPD-related
metabolites were response variables. Moreover, receiver operating
characteristic (ROC) analysis was applied to assess the biomarkers'
specificity and sensitivity. Classical univariate ROC analysis was per-
formed by using SPSS 19 (SPSS Inc.); multivariate analyses of combi-
national biomarker patterns were performed using online ROCCET
(ROC Curve Explorer & Tester) software (http://www.metaboanalyst.
ca/).

3. Results

3.1. Participant characteristics and indoor PM2.5 exposure

The demographic characteristics of our participants are listed in
Table 1. They were old residents aging from 52 to 86 years (median
73 years) and lived in the urban area of Beijing. Their BMI exhibited a
range of 19.2–32.4 kg/m2 (median 24.5 kg/m2). Only 9.8% and 19.5%
of the subjects reported former smoking history and alcohol consump-
tion, respectively, and none of the participants was a current smoker.
By measuring indoor PM2.5 concentration, we found that the partici-
pants were exposed to indoor PM2.5 at a range of 15.1–123.4 μg/m3

(median 50.4 μg/m3); the concentrations of PM2.5 and its elemental
components were summarized in Tables S1 and S2. Nearly two-thirds of
indoor PM2.5 is derived from outdoor and the other indoor PM2.5 is from
resuspension of dust on the ground and other indoor sources such as
cooking, smoking and incense burning (Ji et al., 2018). Since our par-
ticipants all lived in the urban area of Beijing for more than one year,
we considered that they were exposed to indoor PM2.5 from similar
sources during this study. To test the comparability of participants in
different groups, chi-square test was used and there was similar com-
parability (p > 0.05) between subgroups of PM2.5 (low and high ex-
posure groups) and of COPD (COPD and non-COPD groups), indicating
that the prevalence of COPD is comparable in low and high PM2.5 ex-
posure groups, and vice versa, PM2.5 exposure level was also compar-
able in COPD and non-COPD groups (Table S3).

3.2. PM2.5- and COPD-oriented urinary metabolome profiling and their
biomarkers

The metabolic alterations responding to indoor PM2.5 exposure and
COPD in our participants were exploited by using the metabolomics ap-
proach. The supervised PLS-DA data mining showed good separations of the
metabolic profiles that characterized the low and high PM2.5 exposure
(Fig. 2A), as well as COPD and non-COPD (Fig. 2B), respectively. These PLS-
DA models were validated by a strict permutation test (999 random

Table 1
Characteristics of the study participants (n=41).

Characteristic Mean ± standard deviation (SD) Median n (%)

Age (years) 71.0 ± 7.8 73.0
BMI (kg/m2) 24.9 ± 3.3 24.5
Gender
Male 23 (56.1%)
Female 18 (43.9%)

COPD
Yes 23 (56.1%)
Male 22 (53.7%)
Female 1 (2.4%)

No 18 (43.9%)
Male 1 (2.4%)
Female 17 (41.5%)

Smoking history
Past 4 (9.8%)
Never 37 (90.2%)

Alcohol drinking
Yes 8 (19.5%)
No 33 (80.5%)

Q. Huang et al. Environment International 121 (2018) 1243–1252

1245

http://www.hmdb.ca
http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/


permutations), and no overfitting of the data was observed (Fig. S1), in-
dicating that the models for both PM2.5 and COPD were robust.

Biomarkers were screened by PLS-DA. After adjustment by age,
gender, BMI, COPD, past smoking and alcohol drinking, seven bio-
markers significantly correlated with PM2.5 exposure, which are closely
involved in glycolysis, purine and amino acid metabolism (Table 2).
Five of the seven biomarkers were negatively associated with PM2.5

exposure level, while the remaining two were positively associated with
PM2.5. The COPD-related biomarkers were further evaluated by AORs
adjusting for age, gender, BMI, past smoking and alcohol drinking
(Table 3). Eight of the ten identified metabolites were positively cor-
related with COPD, whereas only two metabolites (i.e., Suberylglycine
and 3‑Dehydrocarnitine) were negatively associated with COPD, which
are majorly involved in the metabolism of amino acid, fatty acid and
glucose.

3.3. Metabolites significantly associated with PM2.5 and its element
components

The significant changes of PM2.5-related biomarkers per IQR in-
creases of PM2.5 and its element components were shown in Fig. 3A.
Among all the PM2.5-related biomarkers, an IQR (37.6 μg/m3) increase
of PM2.5 was most negatively associated with dopamine‑4‑sulfate
(54.88% decrease) and most positively associated with 5‑phosphor-
ibosylamine (5PRA; 105.19% increase), respectively. Therefore, 5PRA
was the most sensitive to PM2.5 exposure. PM2.5-related biomarkers also
associated with the elements of nickel (Ni), vanadium (V), zinc (Zn),
selenium (Se), potassium (K), cobalt (Co), lead (Pb), bromine (Br),

sulfur (S), arsenic (As), molybdenum (Mo), cadmium (Cd), tin (Sn),
stibonium (Sb) and manganese (Mn) in the particles. Sulfur was the
most significant element associated with 5PRA (158.14% increase per
IQR). Following 5PRA, 4‑pyridoxic acid and methyluric acid also sig-
nificantly associated with many elements. The largest declines of
4‑pyridoxic acid and methyluric acid were found for S (−65.08%) and
V (−51.96%), respectively.

On the hypothesis that PM2.5 can impact COPD, the percent changes
of COPD-related biomarkers per IQR increases of PM2.5 and its element
components were also investigated (Fig. 3B). The results showed that
cyclic lysophosphatidic acid (CPA) was the only COPD-related marker
that positively responded to PM2.5 level, which also positively changed
with the increases of Sn, Pb, Se and As. Br was negatively associated
with N‑formyl‑L‑methionine and histidine but positively related to oc-
tanoylcarnitine, and Sn was positively associated with both decan-
oylcarnitine and CPA. The rest of observed relations were V with his-
tidine (negative) and aluminum (Al) with decanoylcarnitine (positive).

3.4. ROC analysis

ROC curve is extensively used to evaluate the biomarker diagnostic
performance (Peng et al., 2015). The closer the AUC value approaches
to 1, the better diagnostic performance the biomarker provides. For
PM2.5-related biomarkers, five of seven have the AUC values between
0.7 and 0.9 (Table 2); for COPD-related biomarkers, nine of ten have
the AUC values between 0.7 and 1.0 (Table 3). These results indicated
the moderate to high discriminating abilities for PM2.5 exposure and
COPD risk, respectively. Multiple biomarker models may provide better

Fig. 2. Scoring plots of the developed PLS-DA models with PM2.5 (A) and COPD (B) as the classifier. (A) low exposure group, high exposure group; (B) non-
COPD group, COPD group.

Table 2
Differential urinary metabolic biomarkers associated with PM2.5 exposure in the study.

Metabolite Mw (Da) VIP value Fold changea AUC (95% CI)b Correlation with PM2.5
c Pathway

Uric acid 168.0283 9.85 0.68⁎ 0.73 (0.543–0.917)⁎ −0.509⁎⁎ Purine metabolism
Glyceric acid 1,3‑biphosphate 265.9593 9.73 0.69⁎ 0.684 (0.48–0.887) −0.514⁎⁎ Glycolysis
Methyluric acid 182.0440 5.82 0.53⁎ 0.765 (0.584–0.947)⁎ −0.379⁎ Caffeine metabolism
Indolelactic acid 205.0739 2.57 2.68⁎⁎ 0.816 (0.647–0.986)⁎⁎ 0.371⁎ Tryptophan metabolism
5‑Phosphoribosylamine 229.0351 1.65 5.13⁎⁎ 0.597 (0.379–0.815) 0.466⁎⁎ Purine metabolism
Dopamine 4‑sulfate 233.0358 1.56 0.49⁎⁎ 0.719 (0.517–0.922)⁎ −0.437⁎ Tyrosine metabolism
4‑Pyridoxic acid 183.0532 2.06 0.49⁎ 0.781 (0.595–0.966)⁎ −0.413⁎ Vitamin B6 metabolism

a The change of metabolite abundance is expressed as the average ratio of high exposure group/low exposure group.
b Area under curve (AUC) derived from ROC analysis. CI= confidence interval.
c Partial correlation analysis was performed to investigate the associations between the biomarkers and PM2.5 exposure after adjustment by age, gender, BMI,

COPD, past smoking and alcohol drinking status.
⁎ p < 0.05.
⁎⁎ p < 0.01.
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discriminating capability than single biomarker models (Zhang et al.,
2016). As shown in Fig. 4, the combination of top three PM2.5-related
markers (i.e., indolelactic acid, 4‑pyridoxic acid and methyluric acid
with the synthesized AUC=0.755) and all COPD-related markers (with
the synthesized AUC=0.935) turned out to be the best indicators for
PM2.5 exposure and COPD risk, respectively. Confusion matrix can show
the predictive accuracy as the percentage of correctly classified samples
in a given class. For PM2.5 model, the predicative accuracies were cal-
culated as 68.2% and 68.4% for the low and high PM2.5 exposure
groups, respectively (Fig. 4A); for COPD model, the accuracies were
85% and 95.2% for the non-COPD and COPD groups, respectively
(Fig. 4B).

3.5. Statistical network of metabolites

The statistical linkages between the metabolites were observed by
using the partial correlation analysis adjusting for age, sex, BMI, past
smoking and drinking status (Fig. 5A). For PM2.5-related metabolites,

significant positive correlations were observed between methyluric acid
and 4‑pyridoxic acid, and between glyceric acid 1,3‑biphosphate
(GABP) and uric acid. 5PRA was negatively associated with GABP and
indolelactic acid was negatively associated with both GABP and uric
acid. For COPD-related biomarkers, decanoylcarnitine was found to be
positively correlated with octanoylcarnitine, CPA and N‑for-
myl‑L‑methionine; there was also a positive association between
N‑formyl‑L‑methionine and histidine, and between suberylglycine and
acetylcarnosine. Furthermore, pRDA was applied to assess the statistic
network of metabolites in overview, in which six of the seven PM2.5-
related biomarkers were set as explanatory variables (adjusted by age
and BMI) and eight of the ten COPD-related metabolic biomarkers as
response variables (Fig. 5B). pRDA showed that these metabolites can
be grouped as three clusters (C-1, -2 and -3). PM2.5-related GABP and
uric acid may positively link to COPD-related decanoylcarnitine, octa-
noylcarnitine, CPA, N‑formyl‑L‑methionine and histidine in C-1; PM2.5-
related methyluric acid and 4‑pyridoxic acid may also have positive
linkages with COPD-related spermine, acetylcarnosine and

Table 3
Differential urinary metabolic biomarkers associated with COPD in the study.

Metabolite Mw (Da) VIP value Fold changea AOR (95% CI)b AUC (95% CI)c Pathway

1st 2nd

N‑formyl‑L‑methionine 177.0460 1.63 1.76⁎⁎ 1 7.518 (1.256–45.005)⁎ 0.742 (0.586–0.897)⁎⁎ Methionine metabolism
CPA 392.2328 1.92 1.85⁎⁎ 1 11.183 (2.015–62.063)⁎⁎ 0.841 (0.719–0.962)⁎⁎ Phospholipid metabolism
Suberylglycine 231.1107 2.28 0.6⁎ 1 0.199 (0.041–0.98)⁎ 0.693 (0.530–0.856)⁎ Fatty acid metabolism
Decanoylcarnitine 315.2410 2.21 4.46⁎⁎ 1 4.832 (1.006–23.218)⁎ 0.771 (0.626–0.915)⁎⁎ Fatty acid metabolism
L‑Histidine 155.0695 2.29 1.77⁎⁎ 1 22.329 (2.325–214.439)⁎⁎ 0.761 (0.604–0.917)⁎⁎ Histidine metabolism
Acetylcarnosine 268.1172 4.31 1.74⁎⁎ 1 5.943 (1.22–28.955)⁎ 0.831 (0.708–0.954)⁎⁎ Histidine/β‑Alanine metabolism
3‑Dehydrocarnitine 159.0895 2.40 0.66⁎ 1 0.126 (0.025–0.641)⁎ 0.713 (0.545–0.880)⁎ Fatty acid metabolism
L‑Octanoylcarnitine 287.2097 3.95 2.16⁎⁎ 1 7.256 (1.403–37.517)⁎ 0.8 (0.666–0.933)⁎⁎ Fatty acid metabolism
Spermine 202.2157 2.88 11.93⁎⁎ 1 4336.126 (5.043–3,728,613.732)⁎ 0.932 (0.848–1.000)⁎⁎ β‑Alanine metabolism
D‑Glucose 180.0634 3.12 1.98⁎ 1 5.570 (1.009–30.746)⁎ 0.705 (0.544–0.867)⁎ Glycolysis

a The change of metabolite abundance is expressed as the average ratio of COPD group/non-COPD group.
b Association of urinary metabolic biomarkers with adjusted odds ratio (AOR) of COPD (adjustment by age, gender, BMI, past smoking and alcohol drinking

status). CI= confidence interval.
c Area under curve (AUC) derived from ROC analysis. CI= confidence interval.
⁎ p < 0.05.
⁎⁎ p < 0.01.

Fig. 3. Estimated percent changes (relative to mean value) with 95% confidence intervals in PM2.5- ( ) and COPD-related ( ) metabolic biomarkers per interquartile
range (IQR) increase in PM2.5 and its elemental components. Estimates are adjusted with age, gender, BMI, COPD, past smoking and alcohol drinking status.
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suberylglycine in C-2; while there may be negative associations of
PM2.5-related 5PRA and indolelactic acid (C-3) with COPD-related
metabolites. However, in view of the partial correlations shown in
Fig. 5A, it was only found that methyluric acid and 4‑pyridoxic acid
positively correlated with spermine, and N‑formyl‑L‑methionine had a
positive association with GABP and uric acid, respectively. On the
contrary, indolelactic acid was negatively associated with GABP and
uric acid, and 5PRA had a negative correlation with GABP (Fig. 5A).

4. Discussion

Metabolomics is known as a good strategy to identify the critical
metabolites and metabolic pathways in biological systems affected by
environmental stresses or diseases (Huang et al., 2016; Ghosh et al.,
2016). This study conducted a non-target metabolomics analysis to il-
lustrate the metabolic pathways linking human PM2.5 exposure to
COPD. Seven and ten metabolites were found to be separately

associated with indoor PM2.5 exposure and COPD in the elderly parti-
cipants and the metabolic biomarkers-related PM2.5 elemental compo-
nents were identified and characterized. Furthermore, the statistical
and biological linkages of PM2.5-related metabolites to COPD-related
metabolites were established considering their statistical correlations
and the involved metabolic pathway network.

4.1. Metabolic biomarkers associated with PM2.5 exposure

The current study showed that two metabolites involved in purine
metabolism were associated with the participants' exposure to PM2.5.
Uric acid, a final product of purine metabolism, is produced by the
oxidation of oxypurines such as xanthine. 5PRA is generated from
phosphoribosyl pyrophosphate (PRPP) and serves as an intermediate in
purine metabolism. Uric acid decreased and 5PRA increased in response
to elevated PM2.5, indicating that purine metabolism was disrupted by
PM2.5. The affected purine metabolism (hypoxanthine) was observed in

Fig. 4. ROC curves, probability views and confusion matrix of the combined biomarker patterns for PM2.5 (A) and COPD (B). ROC curves are generated by Monte
Carlo cross validation using balanced subsampling. The predicted class probabilities were calculated for each sample using the developed ROC models.
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rats exposed to PM2.5 (Wang et al., 2017a). Moreover, methyluric acid
(caffeine metabolism pathway), a methylated form of uric acid was
decreased, which may be ascribed to uric acid depletion. GABP pri-
marily exists as a key metabolic intermediate in glycolysis during re-
spiration (Ladame et al., 2003). In the present work, urinary GABP was
down-regulated in humans when suffering more PM2.5 exposure, which
indicated that glycolysis pathway was disturbed. Since glycolysis is a
major pathway of glucose metabolism, it is suggested that the dysre-
gulation of GABP would contribute greatly to the disorder of glucose
homeostasis due to airborne PM2.5 exposure, which is consistent with
the recent observation that the serum glucose increased in humans
when exposed to PM2.5 (Li et al., 2017). Indolelactic acid is a trypto-
phan metabolite found in human urine, and dopamine is synthesized in
the body first by the hydration of tyrosine to DOPA and then by the
decarboxylation of DOPA. Therefore, the increase of indolelactic acid
and the decrease of dopamine 4‑sulfate may suggest the disturbed
tryptophan and tyrosine metabolism in our participants exposed to
PM2.5. The reported PM2.5-related metabolic changes (i.e., in-
dolelactate, tryptophan and tyrosine) by Li et al. (2017) were further in
support of the present observations.

4.2. Metabolic biomarkers associated with COPD

In the present study, the metabolism of several amino acids was
associated with COPD state. N‑formyl‑L‑methionine (fMet) is a deriva-
tive of methionine, which is specifically used for initiation of protein
synthesis. In this work, fMet was positively related to COPD, indicating
that methionine metabolism was enhanced in the patients. Since as-
partate is the precursor for methionine biosynthesis, the previous
findings that aspartate level was up-regulated in COPD patients (Ubhi
et al., 2012) may support the current results. Histidine is an essential
amino acid for humans and a precursor for carnosine biosynthesis, and
carnosine is a dipeptide made up of β‑alanine and histidine. Spermine, a
biogenic polyamine formed from spermidine, is involved in β‑alanine
metabolism. Our study showed that the levels of histidine, acet-
ylcarnosine and spermine increased in patients with COPD, which
proposed that histidine and β‑alanine metabolism were perturbed and
carnosine may be the hub of these changes. Some reports also observed
that the levels of histidine, β‑alanine and carnosine were dysregulated
in COPD patients (Kilk et al., 2018; Wang et al., 2013). In the current
study, we found that CPA, decanoylcarnitine and octanoylcarnitine
were increased while 3‑dehydrocarnitine and suberylglycine (a minor
metabolite associated with fatty acid β‑oxidation in mitochondria) was
decreased, suggesting that fatty acid metabolism was disturbed and

mitochondria function was stressed in COPD patients. CPA is a phos-
pholipid that can be metabolized to fatty acids by phospholipase A2.
Carnitine is an essential factor in fatty acid metabolism by transporting
long-chain acyl-CoA into mitochondria. Naz et al. (2017) and Telenga
et al. (2014) also reported that the concentrations of phospholipids,
acyl-carnitines and fatty acids were altered in COPD subjects. In this
study, urinary glucose level was up-regulated in COPD patients when
compared to the non-COPD controls. Similar to our results, the glucose
level has been demonstrated to be modulated due to COPD (Adamko
et al., 2015; Wan et al., 2017). In view of the importance of glucose in
glycolysis and other crucial metabolic processes, the fluctuated glucose
level would result in significant metabolic disorders in humans with
COPD.

4.3. Predictabilities of metabolic biomarkers

ROC curve analysis is widely accepted as the most objective and
statistically valid method in defining the clinical utility of a biomarker.
A biomarker with AUC>0.7 is usually acceptable for most clinical
applications (Zhang et al., 2014b). Nine of the ten COPD-related bio-
markers (except for suberylglycine with AUC=0.693) have AUC va-
lues> 0.7, indicating that they have moderate to high diagnostic
power for COPD. Combination of the ten biomarkers (AUC=0.935)
showed a great capability in the discrimination of COPD. This result
implied that the observed metabolites well matched the COPD state
from the overall perspectives. Although there were five PM2.5-related
biomarkers with AUC>0.7, combination of the top three metabolites
methyluric acid, 4‑pyridoxic acid and indolelactic acid (with AUC va-
lues of 0.765, 0.781 and 0.816, respectively) gave a smaller AUC
(0.755) than any of the three metabolites. We suspected that it is be-
cause the states of PM2.5 were not well defined, and the component
variation of PM2.5 resulted in the effect variation.

4.4. Elemental components of PM2.5 associated with some metabolic
biomarkers

Airborne PM2.5 is a complex mixture of various chemicals; the major
elemental components may have the crucial potentials to determine its
total biological effects (Wu et al., 2013). We have previously reported
that metal components may play important roles in the metabolic
perturbation induced by water-soluble PM2.5 extracts in human lung
epithelial cells (Huang et al., 2015). In the present study, a total of 15
elements were associated with PM2.5-related metabolic biomarkers,
implying that these elemental components contributed to PM2.5-

Fig. 5. Schematic overview of the statistical linkages and locally connected network of the identified metabolic biomarkers. (A) The significant partial correlations
(with the correlation coefficients R, p < 0.05) for paired metabolic biomarkers were adjusted by factors of age, gender, BMI, COPD, past smoking and alcohol
drinking status; (B) pRDA visualized the overview associations between PM2.5- and COPD-oriented metabolic biomarkers, in which PM2.5-related metabolites were
explanatory variables with age and BMI as the cofactors, and COPD-related metabolites were response variables.

Q. Huang et al. Environment International 121 (2018) 1243–1252

1249



induced metabolic disturbance. Many of the observed metal or me-
talloid elements are toxic (e.g., arsenic and cadmium) or functionally
important (essential elements) and can induce metabolic perturbation
in human populations (Shen et al., 2013; Zhang et al., 2014a; Xu et al.,
2016; Ellis et al., 2012). To some extents, some of elements such as S
and K may just be surrogates of the mass of PM2.5.

We showed that several elements correlated with five of the ten
COPD-related metabolites, which may partly indicate the contribution
of PM2.5 exposure to COPD. Because six elements (i.e., As, Se, Sn, Pb, V
and Br) were associated both with PM2.5- and COPD-related metabolic
biomarkers, we propose that these elemental components play im-
portant roles in PM2.5-caused COPD exacerbation. These observations
are supported by the monitored levels of metallic elements in exhaled
breath condensate (EBC) and serum of COPD patients, which showed
that Mn and Mg levels in EBC were elevated in outpatients experiencing
a COPD exacerbation (Mutti et al., 2006; Corradi et al., 2009). There-
fore, except for the correlations of PM2.5 with COPD-related biomarker
CPA, the statistical association between PM2.5 exposure and COPD de-
velopment may be anchored by these elemental components.

4.5. Metabolic biomarkers link PM2.5 exposure to COPD

The metabolic pathway analysis revealed biological associations of
PM2.5-related metabolic biomarkers with COPD-related ones. From the
viewpoint of PM2.5-related metabolism interruption, hypoxanthine/
xanthine (precursor of uric acid) can be regulated in COPD patients,
and uric acid may be a useful biomarker indicating COPD state (Naz
et al., 2017; Wan et al., 2017; Ozanturk et al., 2016). In addition, the
altered glucose and dopamine metabolism were also observed in COPD
patients (Adamko et al., 2015; Ciarka et al., 2004). These reports clearly
suggested the present observations that PM2.5-related metabolic bio-
markers (uric acid, GABP and dopamine 4‑sulfate) associated with
COPD. With respect to COPD-related metabolites, PM2.5 exposure has
been associated with higher glucose and carnitine levels and lower
spermidine (precursor of spermine) level (Wang et al., 2017a; Li et al.,
2017; Lucht et al., 2018). More interestingly, we directly observed that
PM2.5 associated with COPD-related CPA, a biomarker that indicated
the most significant pulmonary toxicity in PM2.5-treated rat models
(Wang et al., 2017a). For most of these metabolites, in addition to their
statistical associations and the related network linkages (Fig. 5), they
were found to be closely involved in a metabolic pathway network
(Fig. 6), which both indicated the interactions of PM2.5- and COPD-
related biomarkers. These results suggested the evident linkages of
PM2.5 exposure to COPD risk.

4.6. COPD status may be modified by PM2.5-caused oxidative stress and
pulmonary respiration deficiency

Although it is hard to summarize all the modes of action suggested by
the metabolites, functional information from HMDB showed that COPD-
related metabolic biomarkers of octanoyl-, decanoyl- and dehydro-carnitine,
CPA (with 16‑carbon fatty acid) and suberylglycine (an acyl glycine) are
indicators of fatty acid β‑oxidation in mitochondria. Acetylcarnosine (NAC),
a naturally-occurring compound chemically related to carnosine, is a free-
radical scavenger and is particularly active against lipid peroxidation.
Meanwhile, the initiating methionine residue N‑formyl‑L‑methionine (enters
the ribosome as N‑formylmethionyl tRNA) is involved in mitochondrial
function. Histidine shows antioxidation and anti-inflammatory activities
and spermine is a biogenic polyamine formed from putrescine via spermi-
dine by interacting with two S‑adenosylmethionine (SAM) step by step.
SAM is a physiologic methyl radical donor and also possesses anti-in-
flammatory activity. The alterations of these oxidation and antioxidation
associated biomarkers suggest that redox homeostasis was disrupted in
COPD patients and their lungs have suffered excessive oxidation possibly
accompanied by an inflammatory response (Kirkham and Barnes, 2013;
Tworek et al., 2018).

Among PM2.5-related biomarkers, functional information from
HMDB showed that uric acid is a purine derivative and indicates human
antioxidation status, which partially replaces ascorbic acid (i.e., vi-
tamin C) as an antioxidant in higher primates. Methyluric acid is a
methyl derivative catabolized from methylxanthines by following the
metabolism pathways of xanthine to uric acid. The decrease of these
two antioxidants implicated the oxidative stress induced by PM2.5

(Huang et al., 2015; Wang et al., 2017a) in these participants. The
linkages between these two PM2.5-related anti-oxidants to the COPD-
related oxidative/anti-oxidative indicators (Fig. 5) may show the modes
of action of PM2.5 modification to COPD status.

PM2.5-related GABP primarily exists as a metabolic intermediate in
glycolysis, which gives important biological properties such as the
ability to phosphorylate ADP to form the energy storage molecule ATP.
GABP is also a metabolic regulatory signal controlling the oxygen af-
finity of red cells. Therefore, the decreased GABP may indicate the
lowered red cells' oxygen affinity status during respiration when our
participants were exposed to PM2.5. Urinary 4‑pyridoxic acid is the
catabolic product of vitamin B6. Vitamin B2 supports the energy pro-
duction by aiding in the metabolism of fats, carbohydrates and proteins,
and its deficiency can reduce the level of 4‑pyridoxic acid in persons.
Thus, the lowered GABP and 4‑pyridoxic acid may imply that PM2.5 can
cause energy production deficiency in these elderly participants be-
cause their normal respiration was disrupted (Huang et al., 2015; Li
et al., 2017). Taken all these messages together, we suggested a bio-
logical network of these metabolic biomarkers (Fig. 6), which shows
that many pathways are involved in the modification of PM2.5 to COPD
status. PM2.5 exposure lowered antioxidation capacity and reduced
energy generation by impairing respiration, which may play key roles
in the augment of COPD risk. Therefore, the prevention strategy against
the adverse effect of PM2.5 for the elderly population would be hint by
these modes of action.

4.7. Limitations

a) Although urinary metabolomics are less invasive to the partici-
pants than serum/plasma, the addressed metabolic pathways would
have a shift from blood samples. However, urine samples are con-
sidered to be better suited for metabolomic alteration analysis than
blood because homeostasis will keep serum metabolite levels fairly
constant. b) The indoor PM2.5 measurement may introduce some un-
certainties when individual exposure is assessed. However, since the
participants spent most of their time indoors during the study, the in-
door PM2.5 concentration is considered to be representative of the
personal exposure level. c) Although have observed some significant
associations, the sample size is relatively small, which could decrease
the representativeness of the exposure and weaken the statistical cor-
relations. d) Since PM2.5 exposures at different localities or during
different periods would have distinct health effects because of varia-
tions in their chemical constituents (Wu et al., 2013), our results need
to be supported by large and diverse population studies. e) We focused
on the cross-sectional associations between metabolic biomarkers,
PM2.5 exposure and COPD during the same clinical visit, making
causality determination impossible. However, because COPD is a
chronic disease caused in the past, it is unlikely that current PM2.5

exposure measured on one day would be the cause of COPD. We believe
that a cross-sectional study is suited for the current adverse outcome
pathway analysis.

5. Conclusion

To our knowledge, this work is the first epidemiological study in-
vestigating the effects of PM2.5 exposure on human urinary metabolome
and trying to link PM2.5 exposure to the adverse outcome of COPD via
metabolism pathway. Through a LC-MS based metabolomics analysis,
the present study revealed the associations of urinary metabolome with
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PM2.5 exposure and COPD in Chinese people, and the changes of some
metabolites significantly related to PM2.5 and COPD were identified.
Our study suggested that the metabolism disturbance induced by PM2.5

would further translate to an adverse health outcome in the vulnerable
COPD subjects. Except to provide the clues of PM2.5- and COPD-related
metabolic responses, the present work directly highlights the evidence
that PM2.5 exposure can modify COPD status by inducing oxidative
stress and lowering pulmonary energy generation. In addition, we also
provide a novel insight of using the metabolic biomarkers to anchor the
environmental risk factors to health outcomes, which would be valu-
able for the adverse outcome pathway analysis in risk assessment.
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