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A B S T R A C T

Although the occurrence and distribution of antibiotic resistance genes (ARGs) in various aquatic ecosystems are
well explored, understanding of the ecological processes and mechanisms governing the composition and dy-
namics of bacterial ARGs still remains limited across space and time. Here, we used high-throughput approaches
to detect spatial patterns of bacterial ARGs and operational taxonomic units (OTUs) in an urbanizing subtropical
watershed, Xiamen, southeast China over a five-year period. At watershed scale, the OTU profiles were un-
dergoing a directional change, but the ARG profiles showed a high stability or stochastic change over time.
Compared with the upstream and midstream, the richness, absolute abundance, normalized abundance and
diversity of ARGs were significantly higher in the downstream waters. Our results revealed a clear rural-urban
disparity in ARG and OTU profiles which were mainly governed by deterministic and stochastic assembly
processes, respectively. With the increase of urban building area along the river, the ecological processes of ARG
profiles shifted from stochastic to deterministic. In downstream waters, the bacterial ARG profiles were much
more stable than bacterial OTUs. Further, our results indicated that both human-dominated environment (e.g.,
land use) and mobile genetic elements (MGEs) played an important role in shaping the ARG profiles and dy-
namics. Overall, this was a response to spatially extensive human-landscape interactions that included urban
development in the river downstream region, which were common across subtropical coastal cities of China and
can alter the ARG profile dynamics along rural-urban gradient. Therefore, watershed management actions
aiming at reducing threats posed by ARGs in urbanizing watershed should first consider the surrounding ur-
banization level and the mode and intensity of human activity. Our findings also imply that due to the de-
coupling of bacterial function and taxonomy, both aspects should be studied separately.

1. Introduction

Bacterial resistance to antibiotics is one of the most serious threats
to human health, endangering life-saving antibiotic therapies world-
wide (Bengtsson-Palme and Larsson, 2015; Neu, 1992; Sommer et al.,
2009). Currently, the widespread use of antibiotics causes increasing
occurrence, enrichment and spread of antibiotic resistance genes
(ARGs) in various ecosystems of the world (Alonso et al., 2001; Smillie
et al., 2011; Su et al., 2017; Zhu et al., 2013). From the time when ARGs
were identified as emerging environmental contaminants (Pruden et al.,
2006; Rysz and Alvarez, 2004), they have received increasing attention
from researchers, public and governments (Berendonk et al., 2015;

Karkman et al., 2018; Zhu et al., 2017a).
Rivers are highly dynamic in nature as they exhibit high con-

nectivity at temporal, lateral, vertical and longitudinal scales (Allan and
Castillo, 2007). Temporal connectivity includes seasonal and inter an-
nual dynamics of physical, chemical, and biological interactions (Wohl,
2017). Lateral connectivity is represented by transitional environments
between terrestrial and aquatic ecosystems resulting in an exchange of
water, nutrients, sediment, organic matter, and organisms. This dy-
namic interplay between terrestrial and riverine ecosystems leads to
spatially complex communities (Ickes et al., 2005), which is often ob-
served in rivers draining urbanizing watersheds. In this viewpoint,
chemical systems and biological processes shift in response to the
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physical gradient changes from the head water to river mouth. The
complexity of riverine ecosystems may also result from exchanges be-
tween upstream and downstream waters, and between surficial and
underground environments (Wohl, 2017). Despite this, most studies on
riverine ARGs focused mainly on lotic systems associated with human-
polluted water bodies, such as municipal sewage, hospital sewage and
livestock wastewater (Luo et al., 2010; Rodriguez-Mozaz et al., 2015),
iterating only lateral connectivity. However, there exists limited
knowledge on the properties of the microbial antibiotic resistome in the
context of the above four dimensions of river connectivity at watershed
scale (Fig. S1).

As it is widely known, human activities are responsible for the
distribution and dissemination of ARGs in various environmental sys-
tems (Liu et al., 2018; Pruden et al., 2012). As the urban river en-
vironment frequently suffers relatively harsh ecological perturbation
caused by human activities, the precise quantification of the risks re-
lated to ARGs is extremely difficult (Martinez et al., 2015). Urbaniza-
tion arising from human activities alters both biotic and abiotic eco-
system properties (Grimm et al., 2008). Land use change characterizing
urbanization is one of the most important ways by which humans
change the surrounding physical and chemical environmental factors
(e.g. temperature and nutrient load) and collectively cause a dis-
turbance to riverine ecosystem known as the urban stream syndrome
via both point and non-point source pollutions (Dodds et al., 2015; Liao
et al., 2018). Land use change can substantially degrade water quality
in a complex way (Foley et al., 2005). Around the world, rates of land
change will increase greatly as urbanization continue to expand and
human populations grow (Foley et al., 2005; Grimm et al., 2008). A
rapid and large scale urbanization took place in China on an un-
precedented scale during recent decades (Zhu et al., 2011), but our
understanding about the effect of urbanization, especially land use, on
distribution of ARGs in rivers draining China’s urbanizing watersheds is
still limited. Thus, it is important to conduct research on the ARG dy-
namics in riverine systems that drain urbanizing watersheds.

Moreover, it is not well known how changes in microbial taxonomic
composition relate to ecosystem function at watershed scale (Liu et al.,
2018; Louca et al., 2016). In plant communities, variation in species
composition are often coupled to variation in functional trait

composition (Robroek et al., 2017). Whereas microbial communities
can display opposite results that variable taxonomic composition often
coincide stable metabolic functional community (Louca et al., 2017). To
date, we still know little about how variation in antibiotic resistance
function relates to bacterial taxonomic composition at a watershed
scale. Network theory is developing in its application across ecology,
social science, and economics (Newman, 2006), and network analysis
can be used to identify nodes that are of particular importance within a
given network by virtue of their central locations and high con-
nectedness at community level (Liu et al., 2019a).

In microbial ecology, understanding the processes driving natural
community assembly is a major challenge (Amos et al., 2015; Liu et al.,
2018). The study of community assembly processes has established
much about the mechanisms which mainly determine the community
structure in general, but still remains a major challenge in ecology of
ARGs (Guo et al., 2018; Fang et al., 2019). Basically, there are two main
processes, namely stochastic process and/or deterministic process that
simultaneously shape microbial communities (Guo et al., 2018; Mo
et al., 2018; Sloan et al., 2006). The understanding of the ecological
process of ARGs is crucial for prevention and control of the enrichment
and spread of ARGs but which process (stochastic or deterministic) is
the main driver remains largely unknown in rivers at watershed scale.

This study aimed at understanding the occurrence, spatial and
temporal distribution of ARGs in an urbanizing river at watershed scale.
Here, we employed high-throughput approaches to (1) characterize the
spatiotemporal variations of antibiotic resistome and bacterial taxo-
nomic communities in the context of river connectivity; (2) discern the
relative importance of stochastic and deterministic processes struc-
turing bacterial ARGs and bacterial operational taxonomic units
(OTUs); and (3) gain insights into the impact of rural-urban gradient,
particularly land use, on the bacterial antibiotic resistome over five
years. We hypothesized that the mechanisms underlying the composi-
tion of ARGs may be shifted with lateral river connectivity as the sur-
rounding environment is under urbanizing condition; and bacterial
resistance functional and taxonomic communities might be shaped by
the different assembly mechanisms.

Fig. 1. Location of the 10 sampling sites in Houxi River watershed, Xiamen. The water samples were collected from both dry and wet seasons across the upstream
(site 1), midstream (sites 2–5) and downstream (sites 6–10) from 2013 to 2017.
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2. Materials and methods

2.1. Study area and sampling

The Houxi River watershed (24°34′-24°46′N, 117°55′-118°7′E),
covering approximately 205 km2 (Yu et al., 2014), is situated in
Xiamen, Fujian province, southeast China (Fig. 1). It has a subtropical
monsoon climate and is subject to seasonal changes in hydrology and
aquatic environmental conditions (Liu et al., 2013). Houxi River is a
typical urbanizing river and has undergone obvious effects of human
activity in the downstream region due to the rapid urban expansion of
the Xiamen city during the past two decades. Specifically, there has
been an increasing urban buildings area in the lower reaches of the
Houxi River watershed. It therefore constitutes an ideal system for an
in-depth understanding the impact of urbanization on the functional
profile of ARGs at watershed scale.

A total of 100 surface water samples were collected along the Houxi
River from ten sites in January and July from 2013 to 2017, therefore
each site had ten replicate samples (Fig. 1 and Fig. S2). Site 1 was lo-
cated at the upstream area with very minor anthropogenic inter-
ference/disturbance within the forest catchment (Fig. S2). Sites 2–5
were located at the riverine and lacustrine zones of Shidou and Bantou
reservoirs, as midstream area, and sites 6–10 were located in the
downstream in a typical urbanizing area and referred to as downstream
area in this study (Fig. S2). A volume of 500 mL water samples from
each site were collected, and immediately transported to the laboratory.
Before filtering, we mixed the water first to homogenize the bacter-
ioplankton community for each sample. Samples were screened with a
200 μm mesh to remove larger particles, and then filtered through a
0.22 μm pore size polycarbonate filters (47 mm diameter, Millipore,
Billerica, MA, USA). The filters with bacteria were stored at −80 °C
until DNA extraction.

2.2. Environmental and land use variables

Water temperature (WT), pH, dissolved oxygen (DO), turbidity,
electrical conductivity (EC), oxidation reduction potential (ORP) and
salinity were measured in situ using a multi-parameter water quality
analyzer (Hydrolab DS5, Hach Company, Loverland, CO, USA). Total
carbon (TC) and total organic carbon (TOC) were analyzed using a
TOC-VCPH analyzer (Shimadzu, Japan). Total nitrogen (TN), ammo-
nium nitrogen (NH4-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-
N), total phosphorus (TP) and phosphate phosphorus (PO4-P) were
determined by spectrophotometry according to standard methods
(Yang et al., 2017a). Chlorophyll-a was measured with a PHYTO-PAM
Phytoplankton Analyzer (Heinz Walz GmbH, Eichenring, Germany). All
the 17 environmental variables are shown in Table S1.

The watershed boundaries and the river system were delineated
using Digital Elevation Model in ArcGIS 10.4 software (ESRI, Redlands,
CA, USA). The watershed land use data in dry seasons of 2013, 2015
and 2017 were extracted from Landsat 8 images which were down-
loaded from the data sharing infrastructure of earth system science in
China (http://www.geodata.cn/). Four main types of land use were
used: (1) natural and semi-natural areas, including forest and grassland;
(2) agricultural areas, including dry land and paddy fields (although
some small scale agriculture also takes place within the forest); (3) built
areas, including urban areas and rural settlements; and (4) other areas
(mainly barren area), which do not fall in any of the above categories.
The percentages of each land use category were calculated in ArcGIS
10.4 software.

2.3. DNA extraction and sequencing

The filters were cut into small pieces using flame-disinfected scissors
in a sterilized biological safety cabinet (Airtech, Huntington Beach, CA,
USA). Then, FastDNA SPIN Kit (MP Biomedicals, Santa Ana, CA, USA)

was used to extract the DNA from the filters according to the manu-
facturer’s instructions (Liu et al., 2019b). Spectrophotometric analysis
with NanoDrop ND-1000 (Thermo Fisher Scientific, Waltham, MA,
USA) was used to determine the concentration and quality of the ex-
tracted DNA. Total DNA was stored at −20 °C until further use.

Universal primers (341F: 5′-CCTAYGGGRBGCASCAG-3′ and 806R:
5′-GGACTACNNGGGTATCTAAT-3′) were used to amplify V3 and V4
hypervariable regions of the bacterial 16S rRNA gene. PCR reactions
were performed in 30 μL in triplicate containing 15 μL of Phusion®
High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA,
USA); 0.2 μL of forward and reverse primers, and 10 ng of template
DNA. PCR conditions were comprised of an initial denaturation at 98 °C
for 1 min, 30 cycles of denaturation at 98 °C for 10 s, annealing at 50 °C
for 30 s, and an elongation phase at 72 °C for 60 s followed by a final
extension at 72 °C for 5 min. After confirming the length of PCR pro-
ducts (about 470 bp) using a 2% agarose gel electrophoresis, the pro-
ducts of the three replicates were mixed in equimoral amounts and
purified with GeneJET Gel Extraction Kit (Thermo Scientific, Waltham,
MA, USA). Sequencing libraries were generated using NEB Next® Ultra™
DNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA) following
the manufacturer’s instructions, and index codes were added. The li-
brary quality was assessed using the Qubit@ 2.0 Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA) and Agilent Bioanalyzer 2100
system (Agilent Technologies, Palo Alto, CA, USA). Bar-coded DNA
fragments for each sample were sequenced using a paired-end method
on Illumina HiSeq platform (Illumina, Inc., San Diego, CA, USA).

These raw sequences were merged using FLASH (Magoč and
Salzberg, 2011). Quality control, including barcode and primer se-
quence removal, was done in QIIME (Caporaso et al., 2011) and the
resulting sequence data for each sample were made publically available
at the Sequence Read Archive (SRA) database of the NCBI under project
number PRJNA383082 and the accession number SRP104354. These
sequence data were further processed by assembling high quality se-
quences (i.e., sequences with maximum number of consecutive low-
quality base = 3; minimum of continuous high-quality base = 75% of
total read length; maximum number of ambiguous bases = 0)
(Caporaso et al., 2011; Liu et al., 2019b). Chimeric sequences were
discarded prior to further analysis (Edgar et al., 2011). The UPARSE
pipeline was used to pick operational taxonomic units (OTUs) at 97%
similarity level (Edgar, 2013). The taxonomy of bacterial OTUs were
assigned using the RDP classifier at 80% confidence threshold mapped
against the Greengenes database (DeSantis et al., 2006).

2.4. High-throughput quantitative PCR (HT-qPCR) and real-time
quantitative PCR (qPCR)

Before conducting quantitative PCR, the DNA was diluted to 30 ng/
μL for HT-qPCR and 3.0 ng/μL for qPCR, respectively (Liu et al., 2018).
The SmartChip Real-time PCR system (Wafergen Biosystems, Fremont,
CA, USA) was used to perform HT-qPCR to quantify the abundance of
ARGs in each sample. A total of 296 primer pairs targeting 285 ARGs
conferring resistance to most major classes of antibiotics, eight trans-
posase genes, two integrase genes and one 16S rRNA gene, and the
reactions were used following our previous works (Guo et al., 2018; Liu
et al., 2018). All qPCR reactions were performed in triplicate and each
chip included a non-template negative control. Wafergen software au-
tomatically generated the melting process. The results of HT-qPCR were
analyzed as described previously (Guo et al., 2018; Looft et al., 2012).

To quantify the absolute abundance of 16S rRNA gene, a SYBR®
Green approach was implemented on Lightcycler 480 instrument
(Roche, Basel, Switzerland). Each 96-well plate included both standard
curve and negative control (Schmittgen and Livak, 2008). Each PCR
amplification was set up in 20 μL with triplicate under the program as
described in our previous study (Fang et al., 2019).
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2.5. Statistics

Differences in bacterial functional (i.e. ARGs) and taxonomic (i.e.
OTUs) community compositions were determined by Bray-Curtis ma-
trices, which is one of robust approaches in community ecology. Before
calculating the Bray-Curtis matrices and Euclidean distance for en-
vironmental factors, all data variables were log-transformed except pH
to improve data homoscedasticity and normality. Non-metric multi-
dimensional scaling (NMDS) ordination was employed to investigate
the distribution of ARG and OTU communities along the levels of ur-
banization with the PRIMER 7.0 (PRIMER-E, Plymouth, United
Kingdom) (Clarke and Gorley, 2015). We investigated differences be-
tween ARG communities across longitudinal river sections, five sam-
pling years and two seasons (dry and wet). Significant difference (P)
and the degree of separation (Global R) among the above groups were
tested by the analysis of similarities (ANOSIM). Global R ranges be-
tween 0 and 1, with Global R = 0 indicating no separation and Global
R = 1 indicating complete separation.

To evaluate the relative role of stochastic processes on bacterial
functional (i.e. ARGs) profile and taxonomic (i.e. OTUs) community
assembly, both the Sloan neutral community model (NCM) (Guo et al.,
2018; Sloan et al., 2006) and null model approach based on Raup-Crick
coefficients (Chase et al., 2011; Raup and Crick, 1979) were employed.
The NCM can analyze 16S rRNA gene and functional gene, especially

samples recovered from environment (Sloan et al., 2006). The para-
meter Nm is an estimate of the dispersal between communities, N is the
metacommunity size and m is the immigration rate. The parameter R2

predicts the overall fit to the model, as positive R2 indicates the fit to
the neutral model and negative R2 indicates no fit (Sloan et al., 2006).
The null model approach based on Raup-Crick dissimilarity coefficients
was developed by Chase et al. (2011). This approach creates a re-scaled
probability metric ranging from −1 to 1, indicating whether local
communities are more dissimilar (approaching 1), as dissimilar (ap-
proaching 0), or less dissimilar (approaching −1), than expected by
random chance (Raup and Crick, 1979).

To test the effect of dispersal, the linear regression of geographical
distance with Bray-Curtis similarity was used (Louca et al., 2016). To
assess the temporal pattern of community dynamics, the linear regres-
sion of time lags (square root-transformed) with community similarity
based on Bray-Curtis similarity was also performed (Guo et al., 2018).

To examine the linkages among determinants of urbanization
(especially land use types), bacterial taxonomic community and anti-
biotic resistome, we conducted partial least squares-path modeling
(PLS-PM) using the R package “plspm” (Wetzels et al., 2009). To do this,
we first ran a permutation test with 999 simulations on all the ecolo-
gical variables. These variables that significantly influenced the anti-
biotic resistome were classified into the following four groups: land use
group (including built area and other area), physicochemical variable

Fig. 2. Comparison of bacterial ARGs and OTUs in the Houxi River watershed. Non-metric multidimensional scaling (NMDS) ordination of ARGs (a) and OTUs (f)
based composition profiles. Venn diagram showing the number of ARGs (b) and OTUs (g) that are unique and shared among upstream, midstream and downstream.
The barcharts showing the richness, abundance and diversity of ARGs (c–e) and OTUs (h–j), respectively. Green, blue and red colors indicate upstream, midstream,
and downstream, respectively. Up represents upstream; Mid represents midstream, and Down represents downstream. Significant differences (P < 0.01) between
groups are indicated by different letters of the alphabet. Statistical analysis is Mann-Whitney U test. Data are mean ± standard error. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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group (covering dissolved oxygen, turbidity, chlorophyll-a, salinity,
TOC, NH4-N, NO3-N, NO2-N, PO4-P and TN:TP), taxonomic community
(containing different bacterial phyla), and mobile genetic elements
(MGEs). These groups were used in the PLS clusters to determine the
direct and indirect effects on antibiotic resistome. Subsequently, the
overall prediction performance of the model was validated using the
goodness-of fit index (GoF) which is defined as the geometric mean of
the average R2. The higher value indicates better prediction perfor-
mance.

We used network analysis to identify co-occurrence patterns among
ARGs, MGEs and bacterial taxa. Correlation matrices were created
through all possible pairwise Spearman’s rank correlations. If a
Spearman’s correlation coefficient (|ρ|) was ≥0.6 and the P-value
was<0.01, the correlation was considered statistically robust (Ma
et al., 2017b). To reduce the false-positive results, the P-value was
adjusted with a multiple testing correction using the false discovery rate
(FDR) method. Network analyses were performed in R environment
using the “psych” and “qvalue” packages (Liu et al., 2019a) and visua-
lizations were conducted on the interactive platform of Cytoscape
v3.6.1 (available at http://www.cytoscape.org/) and Gephi 0.9.2
(available at https://gephi.org/). We also identified network modules
following the Louvain community detection algorithm (Blondel et al.,
2008).

Statistical significance tests between groups were the nonparametric
Kruskal-Wallis H test and Mann-Whitney U test, and both were per-
formed in SPSS v22.0 (IBM Corp., Armonk, NY, USA).

3. Results

3.1. Changes of bacterial antibiotic resistome and taxonomic communities

We found a significant shift in bacterial ARG profiles and OTU
community compositions along the rural-urban gradient, which was
well corresponded to different land use types (Fig. 2; Fig. S3 and Fig.
S4). Rural-urban variability among the ARG profiles greatly over-
whelmed their seasonal and inter-annual differences (Table 1 and Fig.
S5). The ANOSIM showed a strong and significant difference (Global
R = 0.765, P < 0.01) between the upstream, midstream and down-
stream waters. The difference of ARGs between January and July was
not statistically significant (Global R = 0.015, P = 0.12) (Table 1).
Similarly, NMDS results revealed a significant and moderate separation
in bacterial taxonomic community along the rural-urban gradient
(Global R = 0.507, P < 0.01) (Fig. 2f).

A total of 248 ARGs and 10 MGEs were detected in this study.
Further, we identified 106, 164 and 238 ARGs, and 16,193, 20,525, and
28,614 OTUs in the upstream, midstream and downstream of Houxi
River, respectively (Fig. 2b, g). The abundance of both ARGs and OTUs
exhibited the highest values in downstream samples (Fig. 2d, i; Table
S2). However, the bacterial functional and taxonomic diversities
showed different patterns. The highest ARGs diversity, based on both
ARG richness and Shannon-Wiener index, was observed in downstream
(Fig. 2c, e). Contrary to bacterial ARGs, the highest OTU richness and
diversity were observed in upstream waters (Fig. 2h, j). For ARG rich-
ness, there was no significant difference between upstream and

midstream waters (Fig. 2c, d and e). But the OTU richness and Shannon-
Wiener diversity along the river continuum exhibited a significant
difference among each other (Mann-Whitney U test, P < 0.01; Fig. 2h,
j).

3.2. Shared and unique ARGs among upstream, midstream and downstream

A total of 89 out of 248 ARGs, conferring resistance to all nine types
of antibiotics were shared between upstream, midstream and down-
stream waters, accounting for 84.0%, 54.3% and 37.4% of the total
number of ARGs, respectively (Fig. 2b; Fig. S6a and Table S3). The
shared ARGs made up 94.7%, 77.2% and 82.1% of the total ARG ab-
solute abundance for upstream, midstream and downstream, respec-
tively. The majority of shared ARGs dominated the downstream waters,
and only one tetracycline resistance gene and three other resistance
genes (β-lactam, MLS and vancomycin resistance genes) were abundant
in the upstream and midstream, respectively (Fig. S6b).

The unique ARG richness in upstream, midstream and downstream
was 1, 9 and 67, respectively. Only 16 ARGs were shared between
upstream and downstream sections, while 66 ARGs were shared be-
tween midstream and downstream (Fig. 2b and Fig. S6a).

3.3. Fit to the neutral model of ecological processes

The frequency of ARG occurrence along the Houxi River showed no
fit to the neutral model (R2 = −0.204; Fig. 3a; note that negative R2

values only occur when there is no fit to the model), indicating that
neutral processes were not an important mechanism in structuring the
ARG profile. In fact, the occurrence frequency of most abundant ARGs
that had high relative abundance tended to be more frequent than ex-
pected, thus contributing most to the deviation of ARG profile from the
neutral model. By contrast, the frequency of the OTU occurrence in the
river fitted well to the neutral model (R2 = 0.789; Fig. 3a), suggesting
that stochastic processes could explain a high proportion of the bac-
terial taxonomic community. Further, the re-scaled probability metric
created by the null model approached −1, indicating that the ARG
profiles in the downstream waters were less dissimilar than expected by
random chance (Fig. 3b). Interestingly, in the upstream and midstream,
where human activities were less intense, the re-scaled probability
metrics approached 0, indicating that the ARG profiles were as dis-
similar as expected by random chance (Fig. 3b). Therefore, the anti-
biotic resistome in downstream might have greatly contributed to the
above observed deviation of the total community from the neutral
model (Fig. 3).

3.4. Correlation between antibiotic resistome and bacterial taxonomic
community

We found distinct spatial patterns between antibiotic resistance
function and bacterial taxonomic communities along the Houxi River
over five years. The composition of ARGs in the downstream section
showed the lowest β-diversity, whereas the taxonomic composition was
different and exhibited the highest β-diversity in downstream waters in
comparison with those in upstream and midstream waters (Fig. 2a, f;
Fig. S5a). For ARGs, there was no significant relationship through the
time-lag analysis (P = 0.949), suggesting that the component of ARGs
was relatively stochastic change at the time scale, but for OTUs, the
component of community was unstable and undergoing a directional
change over time (R = -0.398, P < 0.001; Fig. S7).

The ARG profiles exhibited a higher variability than OTU profiles
along the rural-urban gradient (Fig. S5 and Fig. S8). Further, the ARG
profile and OTU community showed a decoupled behavior, however,
we did find that there was a weak but significant positive relationship
between ARG profile turnover and taxonomic community turnover
(r = 0.225, P < 0.001; Fig. S8c). Both antibiotic resistance and
taxonomic community compositions were significantly and negatively

Table 1
Analysis of similarities (ANOSIM) showing the difference in ARG profiles
among different sections, years, and seasons.

Group Global R P

Upstream vs. midstream vs. downstream 0.765** < 0.01
2013 vs. 2014 vs. 2015 vs. 2016 vs. 2017 0.112** < 0.01
January (dry) vs. July (wet) 0.015 0.12

Higher R value indicates stronger compositional difference between groups
(n = 100).
** P < 0.01.
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related to geographical distance and environmental factors, except for
ARGs in the upstream (P = 0.951) and ARGs with geographical dis-
tance in the midstream (P = 0.344), and ARGs exhibited a slightly
higher correlation coefficient than OTUs at the watershed scale (Fig.
S7). The network between ARGs and bacterial taxa showed that Aci-
netobacter belonging to Gamaproteobacteria was the most densely
connected node, followed by Megamonas (Firmicutes) and Comamonas
(Betaproteobacteria) (Fig. S8b), indicating these bacterial species might
be the host candidates of ARG, or these bacterial species and ARGs
probably originated from a similar source.

3.5. Relationship between environmental variables and antibiotic resistome

Along the rural-urban gradient, most environmental factors, such as
electrical conductivity (EC), salinity and nutrients exhibited a sig-
nificant change (Table S1). Our path modeling analysis indicated that
the abundance variation of the 10 MGEs detected had the highest direct
effect on antibiotic resistome variation (Fig. 4 and Table S4). Land use
change showed a relatively low direct negative effect on ARGs, but it
had the highest indirect impact on the ARGs (Fig. 4b). Meanwhile,
bacterial community had a very weak effect on ARGs (Fig. 4), sug-
gesting a decoupling function and taxonomy in the bacterial commu-
nity.

3.6. Co-occurrence patterns among ARGs and MGEs

There were 135 nodes and 565 significant edges among the co-oc-
currence of ARGs and MGEs in all 100 samples (Table S5). Among
them, aminoglycoside resistance genes had the most connections with
other ARGs (Fig. S9). ARGs had a low co-occurrence with the 10 MGEs
detected, suggesting that these ARGs might have a low potential of
horizontal gene transfer rate. However, tetracycline resistance genes
were closely connected with the 10 MGEs (Fig. S9), suggesting that in
the presence of MGEs, tetracycline resistance genes might be easily
transferred across bacterial species.

The numbers of nodes (significant edges) in co-occurrence network
of ARGs and MGEs were 114 (652), 98 (186) and 119 (188) in up-
stream, midstream and downstream, respectively (Fig. S10). Most net-
work properties, including clustering coefficient, network centraliza-
tion, average degree and network density, were largest in the upstream
section indicating that the upstream had the most complex and unique
network (Fig. S10; Table S5). In addition, the modularity indices of the
networks from the upstream, midstream and downstream waters were
0.698, 0.649 and 0.656, respectively, suggesting that these networks
had a well modular structure property (Table S5).

Fig. 3. Ecological processes of bacterial ARGs and OTUs. (a) Fit to the neutral community model for ARGs (left) and OTUs (right). Lines indicating the best fit to the
neutral model are colored in red. Nm indicates the community size (N) times immigration (m), while R2 indicates the fit to the neutral model. Note that negative R2

means no fit to the neutral model. (b) Variation of the Raup-Crick dissimilarity metric for ARGs within each of three sections of Houxi River. Raup-Crick coefficient
indicates whether local communities are more dissimilar (closer to 1), dissimilar (closer to 0), or less dissimilar (closer to −1), than expected by random chance. Up
represents upstream; Mid represents midstream, and Down represents downstream, respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 4. The direct and indirect effects of
land use, environmental factors (Env),
taxonomic community (Taxa) and MGEs on
ARG abundance in the Houxi River. (a) The
final path of partial least squares-path
model (PLS-PM). The solid lines indicate
positive effects and the dashed lines indicate
negative effects. The goodness of fit index
(GoF) was 0.530. Numbers near each arrow
indicate partial correlation coefficients as-
sociated with each causal relationship, and
arrow thickness is proportional to the par-
tial correlation value. (b) The barchart
showing the indirect effects of land use,
environmental factors, and bacterial com-
munity on the ARG abundance. The land use
factors included the percent of built-up land
and other area; environmental factors in-
cluded dissolved oxygen, turbidity, chlor-
ophyll-a, salinity, TOC, NH4-N, NO3-N, NO2-
N, PO4-P and TN:TP.
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4. Discussion

In contrast to chemical contaminants, ARGs are capable of self-
propagating and persisting for longer periods of time and are less likely
to be rendered harmless by dilution (Pruden et al., 2006). Most of the
existing studies, however, describe spatial distributions with limited or
short-term monitoring efforts, especially in lotic ecosystems subjected
to human activities (Luo et al., 2010; Berendonk et al., 2015; Liu et al.,
2018). Data presented here were collected for five years across both the
dry (January) and wet (July) seasons, and showed similar spatial pat-
terns. It's generally accepted that the human-dominated environment
plays an important role in the enrichment and transmission of ARGs in
the urban waterbodies (Liu et al., 2018). However, there is a critical
knowledge gap about the mechanisms and drivers involved in the en-
vironment at watershed scale under anthropogenic stresses (Larsson
et al., 2018). Our previous study showed that spatial differences in ARG
richness and abundance overwhelmed their seasonal variations in the
Houxi River, and only a few abundant ARGs could contribute to largest
of the total ARGs abundance in four seasons (Peng et al., 2019). Here
we found that ARGs exhibited different profiles along the rural-urban
gradient in the Houxi River watershed across five years. Therefore, we
went one step further elucidating the mechanism and the main driving
factors affecting ARG profile at watershed scale to provide useful in-
formation for controlling and reducing the risk of ARGs.

4.1. Increased ARG richness and abundance along the urbanization level

Along the rural-urban gradient, the richness and abundance of ARGs
significantly rose as the increasing anthropogenic stresses (Fig. 2c, d;
Fig. S3; Fig. S4 and Table S2). About one third of detected ARGs (89 out
of 248) were shared between the three sections (i.e. upstream, mid-
stream and downstream) of the Houxi River, with almost all ARGs
enriched in the downstream waters (Fig. 2b and Table S2). The
downstream was a rapidly urbanizing region, characterized by much
more building type of land use. This result is in line with the previous
observations that the concentrations of ARGs would be distinctly high
under human-dominated urban conditions (Ouyang et al., 2015; Yang
et al., 2017b; Zheng et al., 2018; Zhu et al., 2013). Anthropogenic ac-
tivities have been demonstrated to have a strong effect on the occur-
rence and enrichment of ARGs (Liu et al., 2018; Luo et al., 2010; Ma
et al., 2017a; Zhang et al., 2015). High abundance and diversity of
ARGs tend to be linked with a higher probability of dissemination and
the high abundance can also reflect an antibiotic selective pressure
(Bengtsson-Palme and Larsson, 2015). Human activities, including an-
tibiotic therapy, agricultural runoffs and urban wastewater treated or
untreated discharging, can lead the release of antibiotics which have
promoted the occurrence, evolution and spread of ARGs in the aquatic
environment (Liu et al., 2018; Zheng et al., 2018; Zhu et al., 2017b).
Therefore, the increase of urbanization level (represented by urban land
percentage) from nature-dominated upstream to human-dominated
downstream may result in the significant increase of richness and
abundance of ARGs in the downstream waters.

Noticeably, the normalized abundance of ARGs (ARGs/16S rRNA
gene) was much higher in the downstream than upstream and mid-
stream stations (Fig. 2; Fig. S4), indicating that ARGs not only origi-
nated from the external environment but also could self-proliferate
within the bacterial cell in downstream waters. Also ARGs can be re-
leased into the aquatic environment accompanied by their bacterial
hosts from surrounding environment (Fang et al., 2019). This is sup-
ported by our previous study which showed that the normalized
abundance of ARGs was higher in the south/central Chinese lakes than
north ones largely due to stronger human activities (Liu et al., 2018).

Among the 248 ARGs detected in this study, multidrug resistance
genes could be detected in all samples (Fig. S3). This may imply that
multidrug-resistance may facilitate broad bacterial distribution in di-
verse and changing environments. One possible reason would be that in

natural environment, because of the wide use of different antibiotics in
daily life and animal production, there was a wide diversity of anti-
biotics (Liu et al., 2018; Vaz-Moreira et al., 2014). Multidrug resistance
genes are capable of conferring resistance to several different types of
antibiotic compounds. In addition, multidrug resistance genes can be
driven not only by different antibiotics but also by other toxic com-
pounds including biocides, heavy metals, organic solvents and de-
tergents (Alonso et al., 2001; Martinez, 2008).

Ten MGEs, including 2 integrons and 8 transposons, exhibited the
highest abundance in downstream waters (Fig. S3; Fig S4 and Table S2).
Some studies reported that MGEs can play a major role in antibiotic
resistance development and transferring of ARGs among microorgan-
isms in waste water, even in the clinical environment (Karkman et al.,
2018; Martinez et al., 2015). So the emergence and spread of the 10
MGEs detected might be a major challenge for controlling ARGs
widespread transmission. Perhaps due to the increase of human activ-
ities, the abundance of MGEs in the downstream sites was significantly
higher than that in upstream and midstream (Fig. S4), as a previous
study showed that one of MGEs, intI1, can be used as a proxy for an-
thropogenic pollution (Gillings et al., 2015).

4.2. Bacterial antibiotic resistance functional and taxonomic communities
assembling via different mechanisms

Both the neutral and null models were used to determine whether
microbial community assembly could be explained by the stochastic
process (Chase et al., 2011; Louca et al., 2017). In our study, taxonomic
community fitted well with the neutral model at the watershed scale,
revealing that stochastic processes were the main drivers of taxonomic
community variability (Fig. 3). This finding is consistent with previous
studies in which the neutral model could well explain the patterns of
community assembly in the prokaryotic and microeukaryotic plankton
(Chen et al., 2017; Sloan et al., 2006). However, the ARG profile did not
fit to the neutral model, indicating that stochastic processes were not an
important mechanism driving the ecological process of ARGs. This re-
sult is inconsistent with our previous study on ARGs in Xidong Re-
servoir (Guo et al., 2018). As we known, there are several factors
(disturbance, habitat connectivity and size, productivity, predation and
resource availability) influencing the relative importance of stochastic/
deterministic processes in local community assembly (Zhou et al.,
2014). This is probably due to the less human-driven environmental
changes of the reservoir in previous study, and the environmental
condition was more homogeneous than along the urbanizing river of
this study. As a previous study mentioned, the more homogeneous
physicochemical conditions appear to favor neutral processes (Logares
et al., 2013; Sloan et al., 2006). Another reason might be the scale effect
(e.g. the habitat size), that at small space scale like a reservoir, pro-
cesses related to random chance may be stronger; and at the mesoscale
with strong environmental gradients, environmental variables play a
dominant role in determining species or gene distributions (Karst et al.,
2005).

Indeed, along the urbanization level, we found different assembly
mechanisms structuring ARG profile (Fig. 3, Fig. S7), supporting the
findings on the scale dependency of the assembly processes. Along the
whole rural-urban gradient, the effect of anthropologic activities (i.e.
environmental effect) exceeded progressively the random effect, which
is supported by the result that strong environmental gradients might
favor environmental filtering over neutral processes (Logares et al.,
2013). As a result, the main assembly mechanism of ARG profile shifted
from stochastic processes in upstream and midstream to deterministic
processes in downstream waters (Fig. 3b). In downstream regions with
high urbanization level, there were more and strong disturbances
caused by human. Along this urbanization gradient or level, the ARG
profile became more stable as illustrated in the NMDS ordination
(Fig. 2a and Fig. S5), and the similar result was reported from an urban
reservoir across one year (Fang et al., 2019). Indeed, the taxonomic
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community showed a high variability in the downstream largely due to
more productive environments which normally result in a higher bio-
diversity (Chase, 2010). And in downstream waters, high taxonomic
variability could often coincide with stable functional structure because
the microbial functional structure and taxonomic composition may be
shaped by separate processes (Louca and Doebeli, 2017;
Vanwonterghem et al., 2014).

4.3. Progressive urbanization driven by human activities promoted the
stability of ARG profile

Crucially, deterministic process played a relatively important role in
explaining the assembly of ARG profile at watershed level, especially in
the downstream waters. Further, PLS-PM results showed that the
abundance of the 10 MGEs contributed most to ARGs variation (Fig. 4
and Table S4). Therefore, MGEs might be the main factors directly af-
fecting ARGs distribution in the natural environment through hor-
izontal gene transfer which is a major mechanism for ARG spread (Hu
et al., 2016; Ma et al., 2017a; Ochman et al., 2000). As MGEs were
identified as one of carriers of ARGs, the genetic linkage and co-selec-
tion among them may facilitate ARGs dissemination (He et al., 2016;
Zheng et al., 2018).

The origin or enrichment of detected antibiotic resistance genes and
the absence or presence of a selective pressure have major implications
for managing risks (Bengtsson-Palme and Larsson, 2015). Change of
land use in watersheds is a key representative of human activities which
has been shown to make a strong contribution to ARG distribution and
dynamics (Liu et al., 2018; Qiao et al., 2018). The composition of ARGs
showed a significant difference among different types of land use, in-
dicating that the later can affect the variation of ARGs in a complex
way. We found that land use change showed an indirect influence on
ARGs by significantly and strongly affecting local environmental con-
ditions, supporting the fact that surrounding landscapes and domestic
activity could play a key role in selecting different chemical composi-
tion impacting the river (Amos et al., 2015). The inorganic nutrient
content (as well as heavy metal), which was as a pollution indicator
from municipal wastewater and agriculture, might have positive re-
lationship with the prevalence of some resistance gene levels (Czekalski
et al., 2015; Jia et al., 2017). Due to the extension of built-up areas the
population density has increased, as have the antibiotics used for
medical treatment and animal production (Zhang et al., 2015). Mean-
while, via urban wastewater and sewerage drainage, a diverse mixture
of antibiotics with other pollutants and their metabolites and antibiotic
resistant bacteria from surrounding environments can reach the natural
rivers, thereby altering the distribution and magnitude of ARGs in the
receiving waters, especially in the high-density residential areas (Amos
et al., 2015; Marti et al., 2014; Suzuki et al., 2017). In addition, the
wastewater discharge as well as the storm waters conduced to the oc-
currence and spread of ARGs in the receiving water (Jia et al., 2017).
Distribution patterns of ARGs are therefore influenced by the multiple
dimensions of river connectivity (Ickes et al., 2005; Allan and Castillo,
2007; Wohl, 2017). The present data suggest a more pronounced in-
fluence of land use changes, rather than temporal (season) variation
(Fig. 2 and Table 1). Land use changes associated with urbanization
drive micro-climate change which is considered to be one of the factors
that potentially influence ARGs through the transmission of ARGs and
could thereby contribute to the emergence of new resistant strains
(Calero-Cáceres et al., 2017; Grimm et al., 2008).

We found that the bacterial taxonomic community showed a weak
but significant relationship with ARGs, and played a minor role in ex-
plaining the variation of ARGs (Fig. 4 and Fig. S8c). Probably for the
sampling effect existing, our sampling sites were in a river ecosystem
with low antibiotic selective pressure, and the acquisition of the re-
sistance gene may decrease the fitness of bacteria, so the bacteria
tended to loss antibiotic resistance under low antibiotic condition in
upstream and midstream waters (Xu et al., 2016). Under this condition,

the antibiotic resistant bacteria are rare and the overall carriers of ARGs
are weakly relevant under low antibiotic conditions.

But as the ARG hosts, we did find that there were co-occurrence
relationships between ARGs and some bacterial taxa. For example, we
found higher degree of co-occurrence between ARGs and members of
Firmicutes and Proteobacteria. Of these bacterial taxa, the genera
Acinetobacter, Megamonas, and Comamonas had the highest number of
significant correlations with ARG subtypes (Fig. S8b). In aquatic en-
vironment, single bacterial taxon significantly correlated with multiple
ARG subtypes, suggesting that a bacterial host can harbour multiple
ARGs. Recently, Berendonk and his colleagues found that Gammapro-
teobacteria and Firmicutes are the most frequent carriers of acquired
ARGs in diverse environments (Berendonk et al., 2015).

There are some potential limitations that merit further discussion.
First, our analyses were at bacterial community level, we did not know
the exact host bacteria for each of ARGs at species level. Network re-
sults on the co-occurrence patterns between ARGs and bacterial taxa
indicated the possible host information of ARGs, but further studies are
needed to do and finally verify the ARG bacterial hosts at species level.
In this study, however, we focused on different patterns and processes
of ARGs and bacteria ecology at community level along rural-urban
gradient. The evaluation of exact bacterial host for each ARG seems to
go beyond the scope of this study. Second, our findings were based on
one watershed investigation, and a key priority for future study should
either concentrate on a larger spatial scale investigation, and/or focus
on additional field controlled experiments. Even so, our results could
contribute to filling the knowledge gap about the distribution pattern
and community assembly mechanism of bacterial ARGs, and the re-
lationship between bacterial antibiotic resistance function and taxo-
nomic composition in human-impacted rivers at a watershed scale. We
propose that past changes in urban land use are a strong contributing
factor or indicator in ongoing ARGs enrichment and dynamic in other
regions that underwent similar urbanization changes, therefore wa-
tershed management policies aiming at reducing threats posed by ARGs
should first consider local urbanization level (i.e. the mode and in-
tensity of human activities).

5. Conclusions

By characterizing the spatiotemporal distribution of ARGs in a ra-
pidly urbanizing watershed over the period of five years, we found that
the richness, abundance and normalized abundance of ARGs exhibited
the highest value in the downstream with highest urbanization level.
The ARGs profiles showed a stronger deterministic process, although
their hosts (bacteria communities) were strongly shaped by stochastic
processes at watershed scale. Interestingly, the dominant driver of as-
sembly of ARG profiles shifted from stochastic process in upstream and
midstream waters to deterministic process in downstream waters.
Further, land use, especially urbanized area percentage, mainly had an
indirect effect on ARG profiles distribution. Taken together, our results
illustrated a repeated spatial distribution pattern of ARGs in five years
across dry and wet seasons, and different community assembly me-
chanisms of ARGs at different river sections. These findings indicate
that anthropologic activities acted as an important ecological driver of
ARG dynamics in the Houxi River. Our results also highlight that both
bacterial antibiotic resistance functional and taxonomic community
compositions should be considered and distinguished in the future
studies, due to the decoupling of function and taxonomy at community
level.
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