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Abstract
Context The key attributes of landscape pattern

include composition and configuration, which can be

depicted by landscape/spatial metrics. An emerging

pathway is leveraging vertical data to advance three-

dimensional (3-D) spatial metrics to interpret land-

scape attributes and quantify 3-D patterns.

Objectives We introduced a suite of spatial metrics

to recognize 3-D morphological characteristics of

residential communities and examine their temporal

changes.

Methods Seventeen 3-D spatial metrics were

designed and computed at patch-, class-, and land-

scape-levels based on building footprints and height

information in geographic information system (GIS).

These metrics characterized 3-D forms of residential

communities, including number, area, height, shape,

and diversity. These 3-D features were further used to

recognize five typical built types based on the

scheme of local climate zone (LCZ) and quantify

their 3-D morphological changes with rapid

urbanization.

Results The 3-D spatial metrics performed well in

describing vertical and volumetric characteristics of

residential communities and distinguishing five typ-

ical built types in Xiamen, China. Our results

indicated that architectural styles of residential com-

munities changed from homo- to mixed-rise buildings

and from compact to open arrangement with rapid

urbanization.

Conclusions Both 2-D and 3-D features are key

attributes of the landscape. Our results showed that

3-D spatial metrics were not only useful tools for

quantifying surface patterns but also key comple-

ments to vertical feature characterization, offering

advantages in representing urbanization over the

existing indexes. Growing 3-D datasets have great

potential to develop more valuable metrics for

characterizing spatial features, capturing ecological

processes, and understanding drivers in various

landscape contexts.
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High-resolution urban grids (HUGs) ·

Industrial ecology

Introduction

Landscapemetrics can describe spatiotemporal patterns

of natural and artificial environments through counting

patch number and size, depicting shape complexity,

measuring relative richness and diversity, and quanti-

fying aggregation and contagion (O’Neill et al. 1988).

These metrics contain highly condensed information of

landscape composition and configuration and are central

to patch-mosaic model (Forman 1995) and hierarchical

patch dynamics (HPD) paradigm (Wu and Levin

1994, 1997;WuandDavid 2002). Traditional landscape

metrics were widely used to quantify two-dimensional

(2-D) spatiotemporal patterns based on land use/cover

data (Costanza et al. 2019). For example, they per-

formed well in characterizing habitat fragmentation

(Bailey 2011), urban expansion/shrink (Luck and Wu

2002;Wuet al. 2011; Li et al. 2013a, b; Reis et al. 2016),

and other environmental processes (Zurlini et al. 2006).

Furthermore, they could be used to interpret the effects

of landscape elements on environmental and social

processes (Turner 2005), such as biodiversity loss

(Fahrig 2003; Turner et al. 2003), runoff erosion

(Ludwig et al. 2005), air pollution (Bechle et al. 2011;

Bereitschaft and Debbage 2013; Liu et al.

2017a, b, 2018a, b, c), urban sprawl (Galster et al.

2001; Ewing et al. 2002; Tsai 2005), urban heat island

(UHI) (Tian et al. 2019), energy use (Ewing and Rong

2008), and transportation facility (Ewing et al. 2003). A

better understanding of the relationship between spatial

pattern and socio-ecological processes by landscape

metrics is important to increase landscape resilience

(Peterson 2002; Cumming 2011), improve ecosystem

services (Costanza et al. 1997; Metzger et al. 2006;

Termorshuizen andOpdam2009; Frank et al. 2012;Hao

et al. 2017; Yu et al. 2019), and promote sustainability

and human well-being (Wu 2013).

A new emerging pathway is leveraging vertical

information in the landscape to advance three-

dimensional (3-D) spatial pattern analysis based on

new data sources (Chen et al. 2014; Davis et al. 2016;

Liu et al. 2017a, b; Wu et al. 2017; Kedron et al.

2019). One of the sources is to establish discrete

building footprints in geographic information system

(GIS) and collect height information based on social-

media big data. For example, the Open Street Map

(OSM) is a digital map database through crowd-

sourced and volunteered geographic information of

buildings and infrastructure around the world (https://

www.openstreetmap.org/). All features of buildings

and infrastructure are open to editing by any member

of the user community. Another important source is

to create 3-D images of landscapes based on contin

uous grid data from remote sensing instruments, such

as aerial photography, Synthetic Aperture Radar

(SAR), or Light Detection and Ranging (LiDAR).

For example, the shadow length of objects recorded

by aerial images can be used to retrieve height

information based on the relationship with local

elevation and zenith angle of the monitor and sun

(Liu et al. 2017a, b). SAR data can map 3-D positions

of objects based on the time difference between the

transmission and reception of electromagnetic waves

(Che et al. 2018). LiDAR data represent landscapes

through 3-D point clouds of objects (Che et al. 2018).

However, traditional landscape metrics can not be

directly adapted to 3-D pattern analysis (e.g., through

Fragstats) due to additional vertical information.

Therefore, developing 3-D spatial metrics offers a

new approach and may shed light on the quantifica-

tion of landscape 3-D patterns. Only a few studies

have been conducted with landscape metrics in

characterizing 3-D gradient surface (Wu et al.

2017), identifying urban 3-D characteristics (Liu

et al. 2017a, b), and assessing urban 3-D form

changes after a disturbance (Kedron et al. 2019).

These 3-D characteristics of vegetation and buildings

have been further used to assess environmental

impacts, primarily on urban heat island (Davis et al.

2016; Zhang et al. 2017; Tian et al. 2019).

There is a growing interest in integrating two fields

of 3-D form characterization and urban heat island.

For example, the “local climate zone” (LCZ), as a

standard classification system, provides an objective

protocol for measuring the magnitude of the urban

heat island effect in any city by describing physical

and morphological characteristics of a local site

based on ten quantitative metrics (Stewart and Oke

2012). The majority of these metrics describe surface

cover properties (e.g., albedo, admittance) and 2-D

geometry (e.g., impervious surface fraction) and

minority depict 3-D morphology (e.g., height) (Ste-

wart and Oke 2012).
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To further advance this integration of the LCZ

scheme with landscape metrics (especially on 3-D

morphological metrics), this study (1) Kedron et al.

(2019) based on gradient raster dataset from remotely

sensed images. Another important purposes of new

metrics design is to guarantee these metrics are

meaningful and interpretable across various land-

scape contexts and to apply them into dynamic

analysis on urban environment (Kedron et al. 2019).

We hereby (2) identified typical residential commu-

nities based on LCZs and characterized their features

by both 2-D and 3-D spatial metrics and (3)

uncovered morphological changes of built environ-

ment at community (or patch)-, LCZ (or class)-, and

landscape-levels in a city under rapid urbanization.

Data and methods

Assumptions on the morphological quantification

of residential communities

In Chinese cities, residential community is the basic

unit of organization for housing residents. A residen-

tial community usually spans thousands of meters to a

few kilometers in land surface, contains one or more

buildings in the contiguous locality within a clear

boundary (usually surrounded by walls or fences),

and houses hundreds to thousands of families under

the same management company or neighborhood

committee. Both the spatial extent and heterogeneous

composition of residential community match with the

definition of “local climatic zones (LCZs)” (Stewart

and Oke 2012). We identified five classic types of

residential communities (built type I~IV) in Chinese

cities and matched them with LCZs categories

(Fig. 1). The built type I~IV were directly related

to standard LCZ classes 3~6 in Stewart and Oke

2012, respectively. The built type V was related to

the subclass of LCZ 64 based on local architectural

culture, which designed both low-rise villas and high-

rise skyscrapers in the same community (Fig. 1). The

difference with standard LCZ classes was that we set

11 and 8 floors as thresholds to distinguish high-,

medium-, and low-rise buildings and designed sev-

eral new spatial metrics to characterize their 2-D and

3-D morphology (Fig. 1).

2-D and 3-D spatial metrics

Traditional patch-based spatial metrics were defined

on four organizational levels: cells, patches, classes,

and landscapes (McGarigal et al. 2012). In this study,

we defined the “cells” (the finest level) as individual

buildings and “patches” as residential communities

(Fig. 1). Five built types based on LCZs were defined

as “classes” and every community belonged to one of

them (Fig. 1). The landscape-level referred to the city

and therefore included all buildings and communities

(Fig. 1).

We introduced a suite of 5 categories and a total of

17 spatial metrics to characterize both 2-D and 3-D

morphological features of urban residences at the

cell-, patch-, class-, and landscape-levels (Tables 1

and 2). Five categories contained information on

number, area, height, shape, and diversity aspects

(Table 2). Number-related metrics included the total

number and density of buildings at the patch-, class-,

and landscape-levels (Tables 1 and 2). Area-related

metrics included the total areas of building footprints,

open space, and communities and the proportion of

paved surface at the patch-, class-, and landscape-

levels (Tables 1 and 2). A normalized perimeter/area

ratio was selected to quantify the shape complexity of

buildings (Tables 1 and 2). Shannon’s diversity index

was used to measure the diversity of classes (built

types) in the landscape (Tables 1 and 2). Height-

related metrics included the height of individual

building (=floor93 m), area-weighted height of

buildings, and height variation at the patch-, class-,

and landscape-levels (Tables 1 and 2). Rather than

arithmetic average of building height, the area-

weighted height was an updated metric for indicating

the ‘average’ height of several buildings and consid-

ering the footprint area of these buildings as weights.

Based on building footprints and heights, total

building volumes and the plot ratio of every com-

munity were calculated and the class with the largest

building volume was identified (Tables 1 and 2).

These spatial metrics were used to characterize

features of five built types of residential communities

and uncover morphological changes of built environ-

ment from 1990 to 2018 in Xiamen, China.
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Data on residential buildings in Xiamen, China

We digitalized both footprints of individual buildings

and boundaries of residential communities as vector

polygons from both historical atlases and commercial

companies (e.g., Google Earth, Baidu Map) (Fig. 2).

A unified attribute table was created for recording

attribute information (e.g., floor number, vintage),

which collected from real estate agencies (e.g.,

Lianjia, Soufun). Among them, the floor number

was recorded into the attribute table for only building

polygons and vintage information was recorded into

the attribute table for both building and residential

community polygons. Field surveys were conducted

between March 2018 and October 2019 for data

filling and cleaning, especially for missing values of

the building footprints, floor numbers in newly built

communities and vintage information for the build-

ings with a long history (e.g., earlier than 1980 s).

Non-residential buildings, such as industrial, com-

mercial, and public buildings, were not included in

this analysis due to data availability. In contrast to

systematic records of the built-up year for residential

buildings, it is difficult to find systematic records of

vintage information for non-residential buildings

from government documents, commercial reports,

online or field surveys. Besides, it is also hard to

estimate building height accurately for non-residen-

tial buildings due to a very high uncertainty on height

range per floor (3.9~6.4 m) according to Chinese

construction standard, which compared to residential

buildings’ (2.6~3.2 m).

Results

Applying 3-D metrics to distinguish five classic

types of residential communities in Xiamen based

on morphological features

Morphological features of five classic types of

residential communities in Xiamen were character-

ized by a suite of 3-D landscape metrics (Fig. 3). The

compact communities (Type IV) could be identified

first because they owned a relatively higher percent-

age of paved landscape (PLAND_2D) than those

values in the open space communities (Type I, II, III,

and V) (Fig. 3a). The values of the percentage of

paved landscape (PLAND_2D) in the compact

Fig. 1 Assumptions on the morphology of typical residential communities. (adapted from Stewart and Oke 2012) in Xiamen, China
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communities ranged between 40 and 60%, which

compared to the values varied between 20and40% in

the open arrangement communities (Fig. 3a). From

low-, mid-, to high-rise communities, the mean

values of building heights (H) generally increased

from ~20 m (Type III&IV), ~30 m (Type II), to ~

60 m (Type I) (Fig. 3b). The plot ratio (PR) also

increased with the building height due to more floor

Table 1 Descriptions of selected landscape metrics in this study

Landscape metrica Abbre. Unit Equation Description

Number of buildings NB –
P

i2j kj jl ni The number of buildings ni=1,2,… was counted in the community j, class k, or
landscape l

Community area CA m2 P
j2kjl Aj Where A is the total footprint area of the community j in the class k or landscape

l

Building density BD #/ m2 NBj kj jl
CAj kj jl

Where NB is the total

number of buildings

of the community j,
class k, or landscape
l and CA is total

footprint area of the

community j, class k,
or landscape l

Building footprint area BA m2 P
i2j kj jl ai Where a is the footprint area of an individual building i in the community j,

class k, or landscape l

Open space area OSA m2 CAj kj jl � BAj kj jl Where BA is the total footprint area of buildings and CA is the total footprint

area of the community j, class k, or landscape l

Percentage of

landscape paved by

buildings

PLAND_2D %
BAj kj jl
CAj kj jl

Where BA is the total footprint area of buildings in the community j, class k, or
landscape l and CA is footprint area of the community j, class k, or landscape
l

Height H m floor � 3 The floor of individual building is multiplied by 3 to convert to meters

Height variation Var m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Hi�Hmeanð Þ2
NBj kj jl

r

Where Hi is the height of individual building i, Hmean is the average value of

building height in community j, class k, or landscape l, and NB is the total

number of buildings in the community j, class k, or landscape l

Total floor area TFA m2 Pn

i ¼ 1

i 2 j kj jl
ai � floori Where a is the footprint area and floor is the number of levels of an individual

building i in the community j, class k, or landscape l

Volume Vol m3 Pn

i ¼ 1

i 2 j kj jl
ai � Hi Where a is the footprint area of an individual building i in the community j,

class k, or landscape l and H is the height (in meters) of an individual

building i in the community j, class k, or landscape l

Area-weighted height AWH m
Volj kj jl
BAj kj jl

The area-weighted height was the weighted mean height of buildings, where the

weights are based on the total footprint area of buildings (BA) in the

community j, class k, or landscape l

Plot ratio PR –
TFAj kj jl
CAj kj jl

Where TFA is the total floor area of buildings in the community j, class k, or
landscape l and CA is total footprint area of the community j, class k, or
landscape l

Percentage of build

type in the landscape

PLAND_3D % VolkPm

k¼1
Volkð Þ � 100 Where Vol is the building volume of the class k. The result is multiplied by 100

to convert to percentage

Largest class index LCI %

Pm

k¼1
max Volkð ÞPm

k¼1
Volkð Þ � 100 Where max(Volk) is the building volume of the largest class k. The result is

multiplied by 100 to convert to percentage.

Edge E m
Pn

i ¼ 1

i 2 j kj jl
Ei Where E is the total length of edges of an individual building i in the

community j, class k, or landscape l.

Landscape shape index LSI –
0:25Ei jj jkjlffiffiffiffiffiffiffiffiffiffi

BAi jj jkjl
p Where E is the total length of edges and BA is total footprint area of an

individual building i, community j, class k, or landscape l

Shannon’s diversity

index

SHDI – �Pm
k¼1 PklnPk Where P is the proportion of class k in the landscape and the value of the

proportion refers to PLAND_3Dk

a Adapted from McGarigal et al. (2012)
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area (TFA) could be provided by taller buildings

(Fig. 3c). Finally, the mix-rise communities (Type V)

showed more variation in building heights (Var,

9~1 m) than the other four types of communities

(0~6 m) (Fig. 3d).

Applying 3-D metrics to quantify morphological

changes of residential buildings

during urbanization

During 1990–2018, morphologies of residential com-

munities in Xiamen evolved from the compact low-

rise type to mix with open mid- and high-rise types

(Figs. 4, 5a). In the 1990 s, the compact communities

dominated Xiamen’s built type and led to high

building density (BD) and the percentage of paved

landscape (PLAND_2D) (Fig. 5b, c). After 1990 s,

more open arrangement communities were built

(Figs. 4, 5a), resulting in decreases in the building

density (BD) from ~900 buildings/km2 in 1990 to

~550 buildings/km2 in 2018 (Fig. 5b) and the

percentage of paved landscape (PLAND_2D) from

~40 to ~33% (Fig. 5c). Meanwhile, most of these

open arrangement communities owned mid- and

high-rise buildings which led to increases in area-

weighted building height (AWH), volume (Vol), plot

ratio (PR), and shape complexity (LSI) (Fig. 5b–d).

At the city level (landscape-level), the largest class

index (LCI) generally decreased from ~90% in 1990

to ~28% in 2018 (Fig. 5e). Among five types of

residential communities, the largest one in Xiamen

was the compact low-rise community (type IV) but its

proportion (LCI) kept decreasing (Fig. 5e). After

2017, the total floor area (TFA) and volume (Vol) of

the open high-rise communities (Type I) surpassed

that value of the compact low-rise type (type IV),

which led to the former became the dominative built

type in Xiamen (Fig. 5a). The Shannon’s diversity

index (SHDI) also increased rapidly with the expan-

sion of open arrangement communities after the

1990 s and saturated during 2010–2018 (Fig. 5e) due

to a well-balanced mix of five residential types

(Fig. 5a).

Table 2 Three dimensional (3-D) spatial metrics

Categories Landscape metricsa Abbreviation Unit Building

(cell-)

Community

(patch-)

LCZ

(class-)

City

(Landscape-)

Number Number of buildings NB – ✓ ✓ ✓

Building density BD #/ m2 ✓ ✓ ✓

Area Building footprint area BA m2 ✓ ✓ ✓ ✓

Open space area OSA m2 ✓ ✓ ✓

Community area CA m2 ✓ ✓ ✓

Percentage of landscape

paved by buildings

PLAND_2D % ✓ ✓ ✓

3-D Height H m ✓

Area-weighted height AWH m ✓ ✓ ✓

Height variation Var m ✓ ✓ ✓

Total floor area TFA m2 ✓ ✓ ✓ ✓

Volume Vol m3 ✓ ✓ ✓ ✓

Plot ratio PR – ✓ ✓ ✓

Percentage of building

volume in the landscape

PLAND_3D % ✓

Largest class index LCI % ✓

Shape Edge E m ✓ ✓ ✓ ✓

Landscape shape index LSI – ✓ ✓ ✓ ✓

Diversity Shannon’s diversity index SHDI – ✓

a Adapted from McGarigal et al. (2012)
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Fig. 2 The study area map of Xiamen, China. a The location of Xiamen in China. b The location of study area in Xiamen city.

c Footprint and height information of residential buildings in the study area

Fig. 3 Distinguishing morphological disparity of typical residential communities in Xiamen, China
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Discussion

Extending the LCZs scheme and its applications

by integrating 3-D form characteristics

Integrating with 3-D metrics successfully advances

vertical and volumetric characterization of LCZs.

Rather than existing metrics for LCZ classification,

these new metrics help to describe five categories of

composition and configuration information, including

number, area, height, shape, and diversity on multiple

organizational levels, from an individual building to

the whole city (Table 2). Among them, buildings

number and area metrics can measure the size and

density of buildings and suggest the degree of

interspersion or sprawl of the built-up area in a city.

Moreover, the percentage of paved landscape

(PLAND_2D) and open space area (OSA) are

important factors that affect the ventilation of air

pollution (Priyadarsini et al. 2008; Wong et al. 2010;

Zhang et al. 2017). Landscape shape index (LSI) is a

measure of the surface shape complexity of buildings

or communities, which is related to lots of socioeco-

nomic phenomena (Ewing et al. 2002; Bechle et al.

2011; Pauliuk and Müller 2014; Thacker et al. 2019).

For example, a compact building tends to save energy

rather than detached, dispersed houses (Ewing and

Rong 2008). Existed communities with complex

forms are easier to cause local traffic congestion

and affect urban design and planning through the

“lock-in” effect (Bechle et al. 2011). For height-

related metrics, high-rise buildings lead to more

Fig. 4 Spatial patterns of residential communities in Xiamen, China
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demands on pollution-intensive construction materi-

als (e.g., steel, cement) and thus have substantial

environmental effects (Pauliuk and Müller 2014; Xi

et al. 2016; Thacker et al. 2019). In use stage, high-

rise buildings tend to consume more energy (2.5

times electricity per square meter of floor area) than

low-rise buildings due to greater exposure to wind

and sun, which might increase the need for heating

and cooling (Zielinska-Dabkowska and Xavia 2019).

Furthermore, the variation of building heights (Var)

has been proven effective against air pollution by

enhancing vertical convection (Hang et al. 2012;

Yuan et al. 2014; Liu et al. 2018a, b, c). The plot ratio

(PR) has been widely used to measure community

livability and even affect the land prices (Zhang et al.

2018). At the landscape (city) level, the largest class

index (LCI) indicates dominative built types or LCZs

in a city and Shannon’s diversity index is used to

measure the degree of land-use mix. A low level of

land-use mix usually leads to transportation-oriented

design and planning of land use and affects social

accessibility (Song and Knaap 2004). Overall, we

believe that adding more 3-D morphological charac-

teristics in LCZ scheme can not only give valuable

information to understanding how could they affect

UHI magnitude (Tian et al. 2019), but also extend

more useful applications of LCZs, for example, in

parameterization of climate modeling (Cao et al.

2020), urban planning guidance (Perera and Emma-

nuel 2018), and community livability assessment

(Zielinska-Dabkowska and Xavia 2019).

Significant effects of the 3-D form change

on urban environment and human health

The temporal changes of 3-D morphology in urban

built environment uncovered in this study indicate

that the evolution of built type and the improvement

of the community livability under the rapid urban-

ization in Xiamen, China. More open space (OSA)

Fig. 5 Temporal changes of 3-D landscape metrics in Xiamen, China
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has been designed in new open arrangement com-

munities (LCZ-I, II, III, and V), which can be used to

arrange more available green space for recreation and

leisure and hence makes communities be more

environmentally friendly and livability (Fig. 6). Fur-

thermore, light accessibility, as an important

sustainable indicator for human physical health and

mental well-being, significantly increases in open

arrangement communities (Fig. 6). The improvement

of light accessibility helps to keep human health

against related diseases such as vitamin-D deficiency

or short-sightedness (Zielinska-Dabkowska and

Xavia 2019). Meanwhile, sunshine helps with clean-

ing air pollution by enhancing temperature gradient

and vertical convection (Liu et al. 2018a, b, c).

However, booming new high-rise buildings (LCZ-I

and V) lead to vertical growth of city and leave

enormous shadows on the ground and low-rise

buildings. Overshadowing by tall buildings can

weaken clean energy generation by photovoltaic

solar panels on roofs, reduce light accessibility on

low-level apartments, and limit the growth of vege-

tation on the ground (Zielinska-Dabkowska and

Xavia 2019). These deficits need inter- even trans-

disciplinary committees to provide improvement

advice by not only experts and professionals from

fields of urban planning, architecture, engineering,

and medicine but also public and other stakeholders.

Advances and limitations

This study successfully merged GIS-based data on

building footprint and social-media data on building

height and vintage, and used them to examine urban

3-D morphological changes, which is a complement

to previous studies based on gradient raster dataset

derived from remotely sensed instruments (Wu et al.

2017; Che et al. 2018; Kedron et al. 2019). The

certain building footprints in vector data reduce the

uncertainty of boundary generated by the threshold of

cut-points on gradient raster data. However, the

vector data on building footprint and height have

their own uncertainties. First, the building footprint is

often the outer surfaces of roofs and not those of

walls (Augiseau and Barles 2017), resulting in

overestimations of surface area (BA) and building

volume (Vol). Second, the building height (H) is

estimated by the total floor number times the average

height per floor (e.g., 3 m in this study) to convert to

meters (Table 1). For the former parameter, the

recorded floor number usually neglects the height of

the roof and therefore leads to an underestimation of

Fig. 6 Photos of three typical residential communities in

Xiamen, China. a The compact low-rise community (Bashi/八
市, built by 1930 s), b The open low-rise community

(Jianxingxiaoqu/建兴小区, built by 1992). c The open high-

(or mix-) rise community (Zhonghangcheng/中航城, built by

2015). Photo by Yupeng Liu
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the total height of a building. For the latter parameter,

the height for a single floor may vary among

communities and vintages and thus add±10% error

compared to reality. Moreover, we used the build-up

year of buildings instead of multi-temporal data to

analyze the temporal changes of urban built environ-

ment due to data availability. The missing data on old

buildings (usually belong to LCZ-IV), especially for

those have been demolished and replaced by new

communities (usually belong to LCZ-I, II, and V),

would lead to an underestimation of total number

(NB), area (CA, BA, OSA), volume (TFA, Vol), and

related proportion (LCI) in specific LCZs but have

fewer impacts on average-based metrics

(PLAND_2D, PR, AWH). Besides, the values of

3-D metrics at class (LCZ)- and landscape (city)-

levels were based on the patch-level calculation.

Changes in the definition of a patch, for example,

from the irregular shape of a residential community

(e.g., in China) to a rectangle block (e.g., in USA),

would lead to the modifiable areal unit problem

(MAUP). The advantages of choosing residential

communities as patches include (1) the spatial extent

of each community matches the definition of LCZ

and (2) each individual community in Chinese cities

is designed by the same construction company and

thus has a unified architectural style and belongs to a

certain LCZ.

Conclusions

Both 2-D and 3-D features are key attributes of a

landscape. Our study has shown that 3-D spatial

metrics can characterize both surface and vertical

patterns of the urban built-up environments rather

than traditional 2-D metrics. They performed well in

describing the morphological characteristics of five

typical residential communities based on LCZ

scheme and recognizing the differences among them.

They are also useful tools to characterize spatiotem-

poral changes in urban 3-D patterns. The application

of these 3-D spatial metrics in the Xiamen case has

successfully revealed the evolution of architectural

styles in residential communities from homo- to mix-

rise buildings and from compact to open arrange-

ment. Changes in 3-D form of residential

communities increase the brightness of apartments

and the greenness of communities and finally

improve their livability. Continuing advances in

3-D datasets are of great help to develop more

various and valuable spatial metrics for better char-

acterizing spatial features, capturing ecological

processes, and understanding drivers in various

landscape contexts.
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