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Abstract: Gridded CO2 emission maps at the urban scale can aid the design of low-carbon 

development strategies. However, the large uncertainties associated with such maps increase 

policy-related risks. Therefore, an investigation of the uncertainties in gridded maps at the urban 

scale is essential. This study proposed an analytic workflow to assess uncertainty propagation 

during the gridding process. Gridded CO2 emission maps were produced using two resolutions of 

geospatial datasets (e.g., remote sensing satellite-derived products) for Jinjiang City, China, and a 

workflow was applied to analyze uncertainties. The workflow involved four submodules that can 

be used to evaluate the uncertainties of CO2 emissions in gridded maps, caused by the gridded 

model and input. Fine-resolution (30 m) maps have a larger spatial variation in CO2 emissions, 

which gives the fine-resolution maps a higher degree of uncertainty propagation. Furthermore, the 

uncertainties of gridded CO2 emission maps, caused by inserting a random error into spatial proxies, 

were found to decrease after the gridding process. This can be explained by the “compensation of 

error” phenomenon, which may be attributed to the cancellation of the overestimated and 

underestimated values among the different sectors at the same grid. This indicates a nonlinear 

change between the sum of the uncertainties for different sectors and the actual uncertainties in the 

gridded maps. In conclusion, the present workflow determined uncertainties were caused by the 

gridded model and input. These results may aid decision-makers in establishing emission reduction 

targets, and in developing both low-carbon cities and community policies. 

Keywords: Monte Carlo simulation; analytic workflow; uncertainty propagation; remote sensing 

satellite-derived product 
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1. Introduction 

Cities play an essential role in low-carbon development [1] since they accommodate half of the 

global population, and account for three quarters of both global energy consumption and greenhouse 

gas emissions [2]. Understanding the spatiotemporal distributions of CO2 emissions from 

anthropogenic activities is essential for their mitigation [3,4]. Geospatial datasets obtained from 

multiple sources (e.g., remote sensing satellites, crowd-sourcing data, location-based service data, 

and sensors data) are increasing in number, which enables the accurate measurement of the 

spatiotemporal dynamics of CO2 emissions. However, large uncertainties in estimating CO2 

emissions at the urban scale, reduce the efficacy of mitigation policies [5]. For instance, uncertainties 

(50–100%) at the state and urban scales in the USA [6] are greater than the emission reduction target 

for New York City [7]. High uncertainty (42.96%) has also been reported between consumption-based 

(142 Mt) and production-based emissions (81 Mt) in Beijing, China [8]; with a value nearly equal to 

the emission reduction target [9]. Uncertainties for medium and small cities in China are generally 

greater than 40 and 20%, respectively [8]. 

Estimating CO2 emissions at the urban scale, including both un-gridded (i.e., administrative unit 

maps[10–14]) and gridded maps, cannot avoid the propagation of uncertainties from input to result, 

which highlights the importance of being aware of uncertainty estimation, especially in gridded maps 

due to its implications for the precision mitigation of CO2 emissions. Two primary sources of 

uncertainties for the CO2 emission gridding process can be identified as the uncertainties caused by 

the gridded model (geoprocessing analysis), and those caused by the input. Previous studies have 

focused on the uncertainties caused by the input. For example, Gately et al. (2017) investigated the 

two detailed main sources of uncertainties for input: (1) the total emissions estimations, and (2) the 

spatial (or temporal) distributions of proxies (i.e., proxies refer to the potential geospatial datasets 

that could reflect and be used to generate the spatial or temporal distribution of CO2 emissions) [5]. 

Uncertainties in total emission estimations have been analyzed and reported in several studies on un-

gridded maps [12,15]. These uncertainties have been attributed to activity levels (energy consumption 

or industrial production, e.g., statistical data of energy consumption) and emission factors [16]. A 

previous study reported a 20% difference between the aggregated statistical data on energy in 30 

provinces, and the national statistical data on energy for China [16]. Moreover, the default global 

emission factors do not account for the actual emission scenarios among different countries, and tend 

to overestimate the total emissions when compared to local reports (e.g., a 14% emission bias reported 

in China) [17]. Furthermore, uncertainties in the total emission estimations vary at different scales. 

Previous studies have reported low uncertainty (−6 to 6%) in the total emissions estimations for 24 

Chinese cities in 2010, medium uncertainty (−9 to 11%) in the national CO2 emissions estimate for 

China in 2005, and high uncertainty (−18.75 to 18.75%) in the global CO2 emissions estimate from 

combustion sources in 2007 [15,18,19]. For the uncertainties in the spatial (or temporal) distributions 

of proxies, these uncertainties mostly occur in gridded maps, and can be attributed to the aggregated 

effects of their spatial resolutions, and the inaccurate spatial patterns of emissions [5]. The aggregated 

effects misestimate emissions at the grid-cell level, because emissions are generally generated at a 

spatial scale coarser than that of the actual source activities. For example, a comparison of the Fossil 

Fuel Data Assimilation System, the Open-Source Data Inventory for Anthropogenic CO2, the 

Emissions Database for Global Atmospheric Research (EDGAR), and the Anthropogenic Carbon 

Emissions System indicated significant differences in CO2 emissions at regional (20%) and city scales 

(50–250%) [5]. Additionally, the inaccurate spatial patterns of emissions of spatial proxies mean that 

the uncertainty exists in a digital representation (e.g., uncertainties in retrieval products, uncertainties 

in geoprocessing process, or the low-quality satellite imagery due to cloud mask), or that spatial 

proxies cannot entirely reflect the spatial distribution of CO2 emissions (e.g., population density 

gridded maps) [20]. For instance, the gridded uncertainties in the CDIAC data were based on 

uncertainties in the spatial proxies, which were attributed to the transformation of the coordinate 

system (29–112 km per degree at different latitudes, 0–73.87%) and the raster representation (0–100%). 

The results indicated that uncertainties in the CDIAC map ranged from 4 to 190% [21]. 
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However, to our knowledge, few studies have investigated the uncertainties caused by the 

gridded model. Most of the existing detailed gridded CO2 emission maps have been classified into 

two categories, namely the “global downscaled” and “bottom-up” approaches [22]. The global 

downscaled approach uses spatial proxies, such as population data and nighttime light imagery, to 

determine the total global, national, and regional emissions over a defined space and time domain 

[23]. Whereas, the bottom-up approach focuses on spatiotemporally explicit gridded CO2 emission 

maps based on direct flux monitoring (eddy covariance measurements) and sector emission data 

from various sources, such as transportation, industry, and commercial buildings [22]. In both the 

allocated model of the global downscaled approach, and the transformed model of the bottom-up 

approach, may exist model structural error, leading to uncertainties. Furthermore, uncertainties 

existing in non-spatial and spatial data will subsequently propagate through the gridding process of 

CO2 emissions. Generally, the uncertainties propagated through the gridding process are ultimately 

enlarged/reduced. This may cause misleading findings for CO2 emissions-related studies. 

Thus, the quantification of uncertainties at the urban scale is central to research on CO2 emissions 

[5]. Previous methodologies for the quantification of uncertainties of CO2 emissions could be 

categorized into two main types: using Monte Carlo simulations, or using the inventory comparison 

method. Monte Carlo simulations can be used to estimate uncertainties in total emission estimations 

by generating samples according to the probability distribution function, and prior coefficients of 

variance for activity levels and emission factors [15,18,19]. Previous studies reported prior coefficients 

of variance for activity levels, ranging from 5 to 30% for different sectors [15,19]. The coefficients of 

variance for emission factors were primarily based on Intergovernmental Panel on Climate Change 

guidelines [24]. The existing Monte Carlo simulations can estimate the total uncertainties but lack the 

spatial distribution of uncertainties to enable identifying both the high-emission and low-uncertainty 

areas. The inventory comparison method is a commonly used method for evaluating the uncertainties 

in spatial (or temporal) distribution of proxies by comparing the gridded maps with other open 

products. The inventory comparison method [5] can be used to evaluate uncertainties in the sum of 

all cell values, and to subsequently draw uncertainty distribution maps. There is a study that 

compared the National Bureau of Statistics of China, EDGAR, and Fossil Fuel Data Assimilation 

System with the China High Resolution Emission Database (CHRED) at two levels, and 

demonstrated strong correlations (correlation coefficients of 0.58–0.86) between CHRED and the 

other products [25]. The total emissions estimate obtained from high-resolution mapping methods 

(7.83 Pg·C·yr−1) was similar to that obtained by the International Energy Agency (7.873 Pg·C·yr−1) [18]. 

The inventory comparison method has limited applications because of the lack of emission 

inventories at the urban scale. Furthermore, different accounting scopes among the open gridded 

CO2 emission inventories can also cause incorrect uncertainty evaluation results. 

To address the above mentioned issue, an analytic workflow was proposed to analyze the 

propagated uncertainties caused by the gridded model and the input for gridded CO2 emission maps. 

The present workflow used four sub-modules based on Monte Carlo simulations and a bootstrap 

sampling method to analyze uncertainties, without other detailed open emission inventories. Two of 

the submodules obtained the corresponding uncertainty of each grid value, generated the uncertainty 

map caused by the gridded model, and the uncertainties for the sum of each cell (also referred to as 

propagated uncertainties caused by the model); the other submodules generated the uncertainty 

distribution maps based on the total emission estimations and spatial proxies (also referred to as 

propagated uncertainties caused by input). We regarded the gridded maps of CO2 emissions 

constructed in previous studies as a case study, and applied the workflow to estimate the 

uncertainties [26–29]. The estimation of different uncertainties helps decision makers in formulating 

relevant policies. Uncertainties in total emission estimations aid the determination of emission 

reduction targets, the corresponding risks for cities and enterprises, and significant emission sources. 

Uncertainty maps could help to identify locations suitable for developing low-carbon communities. 

Therefore, this workflow can be adopted in other studies which focus on urban-scale CO2 emissions. 

Additionally, the estimation of different sources of uncertainty could improve emission-reduction 

policies. 
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2. Materials and Methods 

2.1. Overview 

Taking Jinjiang in 2013 as the case study, gridded maps of annual CO2 emissions were produced 

with sizes of 30 m and 500 m using two multi-sources geospatial datasets of corresponding resolution, 

including satellite (e.g., night light imagery), vector data (e.g., road network, town-level populations), 

and satellite-derived products (e.g., digital elevation model). Our goal was to quantify the 

uncertainties caused by the gridded model, and inputs of the gridded CO2 emission maps at the urban 

scale. We proposed an analytic workflow based on the Monte Carlo simulation and bootstrap 

sampling method. The workflow included four different submodules, described in Section 2.3. 

2.2. The Description of the Case Data 

The CO2 emission gridded maps of Jinjiang (E 118° 24′–118° 43′, N 24° 30′–24° 54′), a southeastern 

city in China (Area 649 km2), were constructed based on geospatial datasets (e.g., remote sensing 

satellite-derived products) from previous studies [26,28]. Jinjiang is one of the most developed 

counties in China; yet, it represents the local urbanization mode, with fast economic growth and 

urban sprawl, a stable permanent population, and a large floating population. The gridded maps 

were constructed using a general hybrid approach, based on global downscaled and bottom-up 

elements (e.g., industrial areas). In the previous studies, the first step calculated the total (sum of 

emissions from three sectors below), residential, industrial (except the energy consumption of the 

electrical production department), and transport emissions using energy consumption values within 

the urban geographic boundary of Jinjiang City in 2013, and the corresponding emission factors. The 

next step was generating three corresponding spatial proxies of each sector: resident (refers to 

population density gridded maps), industry (refers to the product of a binary-layer of industrial land 

and night light intensity), and transport (refers to the road area). These spatial proxies were produced 

at 30 m and 500 m, and the sum of all the grid values was kept as 1. Each grid value, usually named 

“weight”, represents the ratio of the corresponding grid occupied with the specific emissions. Finally, 

using the following formula the total gridded CO2 emission maps were generated. The coarser-

resolution gridded CO2 emission maps were not aggregates of the fine-resolution gridded CO2 

emission maps. They were produced by using two-resolution geospatial datasets. 

�����  =  � �� ∙ ����ℎ��,� =

�

� � �

� ��� ∙ ��� ∙ ����ℎ��,�

�

� � �

 (1) 

where Gridi is the total CO2 emissions (unit: t) at the ith grid (i = 1, 2, 3..., n), Cl (units: t) is the total 

amount of CO2 emissions from different sectors, ALl (units: t) is the total energy consumption from 

different sectors, and EFl (units: t/t CO2) is the emission factor for different sectors based on the IPCC 

method [24] at the ith grid (l = 1, 2, 3, which represent residential, industrial, and transport emissions, 

respectively), and Weighti,l is the weight of the specific sector on the grid, i. In fact, Weighti,l is the 

mathematical form of the spatial proxies. Detailed information about these gridded maps is shown 

in the paper of Dai et al. (2020) [26]. 

2.3. Analytic Workflow of Uncertainty Propagation 

An analytic workflow including four submodules was developed to quantify the uncertainties 

caused by the gridded model and input in the gridded maps of CO2 emissions (Figure 1). The 

uncertainty results of submodules were U1, U2, U3, and U4. 

2.3.1. The Design of Analytic Workflow 

The initial step in estimating the uncertainties propagated during the gridding process was 

analyzing the gridded model and inputs, to understand the potential uncertainty sources and the 

propagating process. In Figure 1, the gridding process consists of raw data (e.g., energy, industrial 
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points, roads, and night light imagery satellite), standard input data (e.g., activity levels, emission 

factors, and spatial proxies), and the gridded model (i.e., a raster-based model to overlay the gridded 

CO2 emission maps of three sectors using Formula (1)). Both the raw data and standard input data 

belong to the input of the gridded model. Hence, the potential uncertainty sources, which may be 

propagated through the gridding process, include the uncertainties caused by inputs, namely 

uncertainty 1, and the uncertainties caused by the gridded model, namely uncertainty 2. The gridded 

model causes the propagation of uncertainties 1 and 2. Overall, uncertainties of output depend on 

the synergistic effect of uncertainty 1, uncertainty 2, and uncertainty propagation. 

The four submodules of the workflow were based on the two basic assumptions: (1) the input is 

“true” and has not caused the uncertainties, and (2) the gridded model has not caused the 

uncertainties. 

 Assumption 1: the input is “true” and has not caused the uncertainties 

We developed the first two submodules (Submodules 1 and 2) based on assumption 1. In these 

submodules, the uncertainty of output only depended on the uncertainties caused by the gridded 

model and uncertainty propagation. 

For the first submodule, the global probability density functions (PDFs) of “true” spatial proxies 

among three sectors were fitted using a maximum likelihood estimate method, and we verified the 

goodness of fit using a Kolmogorov–Smirnov test (KS test) [30]. Once the KS test was significant, the 

fitted PDFs would be used to generate simulated samples using Monte Carlo simulation. 

Subsequently, we compared the cumulative distribution functions (CDFs) of the simulated and 

“true” grid values. The differences between the two CDFs represented the grid value–uncertainty 

relationship in the final gridded CO2 emissions maps caused by the gridded model. Then the look up 

table (LUT), a table including each grid value and its corresponding uncertainty, was generated by 

the above CDFs comparisons. Finally, the uncertainty gridded maps caused by the gridded model 

were generated by the corresponding relationship between grid value and uncertainty, from the LUT 

and gridded CO2 emission maps. These uncertainties were named U1. 

For the second submodule, a bootstrap sampling method [31] was used to generate the 

uncertainty for the sum of the grid values caused by the gridded model. Then, we randomly selected 

1000 samples from the grid values of three spatial proxies among three sectors, and repeated the 

sample generation process (sample with replacement) 10,000 times. Once the sample distributions 

were obtained, we calculated the mean grid value of total, residential, industrial, and transport CO2 

emissions for each sample generation process. Using the samples of mean grid values, we could 

estimate the mean value, and the 95% confidence interval (CI), of the sum of the grid values among 

total, residential, industrial, and transport gridded CO2 emission maps through multiplying the 

number of grids; this was named U2. 

 Assumption 2: the gridded model has not caused the uncertainties 

We developed other submodules (Submodule 3 and 4) based on assumption 2. In these 

submodules, the uncertainty of output only depended on the uncertainties caused by the input and 

uncertainty propagation. The input could be categorized into two detailed classifications: total 

emissions estimation, and spatial proxies. Submodules 3 and 4 aimed to investigate the above 

corresponding uncertainties caused by the total emission estimation and spatial proxies, respectively. 

For the third submodule, Monte Carlo simulation was used to estimate the uncertainty maps 

caused by the total emission estimations (i.e., activity levels and emission factors). In this study, we 

took a city, just as an experiment, to investigate the uncertainties caused by the total emission 

estimations. Hence, we only considered the uncertainty of activity levels. Regarding the total CO2 

emissions, we assumed that the emission factors and spatial proxies were accurate, and that the 

uncertainties in activity levels followed a normal distribution [18,19]. Once the coefficient of variation 

of the activity levels had been obtained, Monte Carlo simulation was used to generate 10,000 samples 

of activity levels in order to generate new gridded maps of CO2 emissions. U3 was obtained as the 

difference between the new gridded maps and the “true” gridded maps (our gridded maps generated 
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in the previous studies). Furthermore, submodule 3 could also be used to estimate the uncertainties 

caused by emission factors. 

For the fourth submodule, a random error of the spatial maps was used to produce the 

uncertainty maps caused by the spatial proxies. Specifically, we randomly selected 20% of the grids, 

and set each of these grid values as a sum of the mean value of the selected grids and the random 

error, which was generated by a normal distribution with a zero mean and fixed standard deviation 

(i.e., the mean value of the selected grids divided by six). Then we used the new spatial proxies with 

random errors to generate the new gridded maps of CO2 emissions. We compared these new gridded 

maps with the “true” gridded maps, and thus obtained U4. 

It should be noted that no field measurement data were used in this study, and the uncertainties 

of the gridded CO2 emissions maps were the expected results based on probability theory. Detailed 

formula and experiment settings will be introduced in Section 2.3.2. 

 

Figure 1. Analytic workflow of the uncertainty propagation in gridded CO2 emission maps. ALs, 

activity levels; CI, confidence interval; EFs, emission factors; GDP, gross domestic product; KS, 

Kolmogorov–Smirnov; LUT, look up table; MLE, maximum likelihood estimation; NTL, night time 

light; PDFs, probability distribution functions. 
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2.3.2. The Formula of the Submodules and Experiment Setting 

All the grid values of the CO2 emission maps were the stochastic variables, Gridi, within a 

product of the total CO2 emissions estimate, Cl, and the spatial proxies, Weighti,l, of an unknown 

probability distribution, which satisfy Equation (2). 

�
����� = ∑ ������ℎ��,� = ∑ ��� ∙ ��� ∙ ����ℎ��,�

�
� � �

�
���

����ℎ��,�~���,�(��, ⋯ , ��)
  (2) 

where the Pun,l(…) was the lth probability density function of the spatial proxies. The spatial proxies 

obeyed the unknown probability distributions which could be fitted. λ1, …, λi were the fitted 

parameter of probability distributions of the spatial proxies. The descriptions of Gridi, Cl, ALl, EFl, and 

Weighti,l are the same as the descriptions of Equation (1). We developed and conducted the four 

submodules based on the above theory. Detailed formulas and experimental settings of the 

submodules are mentioned below. 

Submodule 1 indicated the difference between the CDFs of the simulated and actual grid values, 

which elucidated the relationship between each cell value and its corresponding uncertainty. First, 

the global PDFs of the spatial proxies for CO2 emissions among three sectors at 30 and 500 m were 

fitted by the maximum likelihood estimation method, and the KS test was performed to verify the 

fitting results [30]. As the PDFs of the spatial proxies were similar to the logarithmic normal 

distribution, we assumed that the PDFs of the spatial proxies were this distribution, and fitted the 

PDFs. Six global PDFs from three sectors at two resolutions for the entire area were fitted. Based on 

six fitted PDFs, Monte Carlo simulation was used to generate 100,000 samples for each sector at two 

resolutions. Using Formula (1), we could obtain the total, residential, industrial, and transport CO2 

emissions at each grid value. Hence, we obtained the CDFs of the simulated grid values and actual 

values of CO2 emissions, which were then used to compare the simulated and actual grid values. 

Defining the uncertainty as the difference among two CDFs, and two LUTs (30 and 500 m), the grid 

value and its corresponding uncertainty were generated by self-defined intervals of grid values. 

Finally, we retrieved and generated the uncertainty maps from the gridded model by searching the 

corresponding uncertainty of each grid value in LUT. 

Submodule 2 evaluated uncertainty in the sum of the grid values (i.e., total emission estimations) 

by the non-parametric bootstrap sampling method [31]. During each sampling process, a total of 1000 

grid values of CO2 emissions, based on each of the three spatial proxies at 30 and 500 m, were 

sampled, and the sampling process was repeated 10,000 times. Subsequently, the 1000 corresponding 

grid values of CO2 emissions were calculated using Formula (1). Thus, we obtained the mean values 

of 1000 corresponding grids in each sampling process. Then 10,000 mean values of CO2 emissions 

( �����
�������, �����

��������, ⋯ �����
��������  m = 1, 2, …, 10,000) in the sampling grids were obtained, which could 

represent the probability distribution of mean values for all the grids (�����
�������), due to the law of large 

numbers. Hence, the PDFs, statistical terms, and the 95% CI of total CO2 emissions for all the grids 

were estimated through linear transformation. Since total CO2 emissions for all the grids were equal 

to the product of the mean value and the number of grids, the 30 m and 500 m maps had 1,457,372 

and 5332 grids, respectively. 

Submodule 3 was used to evaluate the propagated uncertainty caused by the total emission 

estimations. It was based on the generative uncertainty of the total emission estimations, which was 

in turn based on the coefficients of variance of emission factors, activity levels, or both. These were 

used to generate normally distributed samples, and to calculate their means and CI. Zhao et al. [19] 

reported a 5–30% variation in the normal distributions of activity levels for different sectors of CO2 

emissions. In this study, the coefficients of variance for activity levels of residential, industrial, and 

transport emissions were set to 20, 10, and 16%, respectively [19]. Monte Carlo simulations were used 

to generate 10,000 activity level samples for each sector, which generated 10,000 new gridded CO2 

emissions maps. The percentiles for CO2 emissions at each grid were obtained from the new gridded 

maps. Therefore, uncertainty and percentile values were calculated as follows: 
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where AL obeys the normal distribution with μAL,l and σAL,l2, cv is the assumed coefficients of variance 

for activity levels and equal to the σAL,l2 divided by μAL,l, μAL,l is equal to the total CO2 emissions of the 

lth sector, σAL,l2 is calculated by μAL,l and cv, Uncertaintyi is the uncertainty in CO2 emissions at the ith 

grid, ������
�,�,� is the mean CO2 emissions at the ith grid obtained from Monte Carlo simulations, CIi,95 is 

the 95% CIs width of CO2 emissions at the ith grid in the Monte Carlo simulations, and CO2,i,97.5 and 

CO2,i,2.5 are the 97.5 and 2.5% quantiles of CO2 emissions at the ith grid in the Monte Carlo simulations, 

respectively. 

Submodule 4 evaluated the propagated uncertainty caused by spatial proxies, through inserting 

a random error into the spatial proxies or quality assessment. Most spatial proxies are difficult to 

evaluate the accuracy of without validation datasets. Hence, the prior error of the spatial proxies will 

be used to investigate the propagated uncertainty caused by spatial proxies. Furthermore, some 

spatial proxies caused the evaluated uncertainties during the generation process, such as the quality 

assessment files of the satellite-derived products. In this study, 20% of the grids of the spatial proxies 

were randomly sampled. These grid values were re-generated using a sum of the mean value of the 

sampled grids and a random error, ξi. The random error obeys the normal distribution, whose mean 

is equal to 0 and standard deviation is equal to the square of the mean value of the sample grids 

divided by 3. The setting of the random error considered two limited rules: (1) the sum of the spatial 

proxies must be 1, and (2) each grid value of the spatial proxies should be more than 0. Hence, the 

mean of the random error must be set to 0 to fulfill the first rule, and the standard deviation must be 

set to the square of the mean value of the sample grids divided by 6, because 99% of the values which 

obey the normal distribution will be located in the range from mean ±3 standard deviation. This kept 

the minimum value of the random error as 0, to fulfill the second rule. Subsequently, proxies with 

new random errors were obtained and gridded to produce the new CO2 emissions map. The new 

gridded CO2 emissions maps were compared to the original gridded maps, and the difference was 

estimated as follows: 

⎩
⎪
⎨

⎪
⎧ ����ℎ��,�

� = ����ℎ���%,�
���������������� +  ��, ��~� �0,

����ℎ���%,�
������������������

6
 �

�����������,� = �����������,� − �����,� 

���������� =  
∑ �����������,�

�
� � �

��

 =  
∑ ������,� −  �����������,��.�

� � �

��

× 100%

 (4) 

where Weighti,l’ is the new value of spatial proxies set to a random error of the lth sector, ����ℎ���%,�
���������������� 

is the mean of the sampled grid of the spatial proxies from lth sectors, and ξi is the random error. 

differencei,l is the absolute difference between the real and simulated emissions for the lth sector on 

the ith grid (l = 1, 2, 3, and 4, which represent residential, industrial, transport, and total emissions, 

respectively), Cl is the total CO2 emissions from the lth sector, and Gridi,l and simulationi,l represent the 

total and simulated CO2 emissions for the lth sector on the ith grid. 
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3. Results 

3.1. High-Resolution Gridded CO2 Emissions Map Patterns 

3.1.1. High-Resolution Gridded CO2 Emissions Map 

In this study, we used the gridded CO2 emissions maps constructed in previous studies [26–28]. 

Please see Tables S1–S3 (Supplementary Materials) for the composition and the heterogeneity 

analysis of the maps. The annual CO2 emissions per capita of Jinjiang city was 8.12 t in 2013, and 

10,000 yuan of Jinjiang’s GDP caused 1.219 t of CO2 emissions. The total emission patterns of the 30 m 

and 500 m resolution CO2 emissions maps were similar (Figure 2a,e). The highest CO2 emission grids 

were located in the urban residential areas in the northern region, and in the industrial areas in the 

central region. Rural areas had low values of CO2 emissions. Residential emissions were concentrated 

in the northern built-up area, with high values of CO2 emissions being observed on the 500 m 

resolution map in this built-up area (Figure 2b,f). The distribution of industrial emissions was wider 

and more fragmented on the 500 m resolution map than on the 30 m resolution map (Figure 2c,g). 

Transport CO2 emissions were clearly distributed along roads on both maps (Figure 2d,h). 

 

Figure 2. Maps showing CO2 emissions in Jinjiang city at resolutions of 30 m (a–d) and 500 m (e–h). 

(a) and (e) show total CO2 emissions. (b) and (f) show residential CO2 emissions. (c) and (g) show 

industrial CO2 emissions. (d) and (h) show transport CO2 emissions. 

3.1.2. Spatial Variation of CO2 Emissions 

We constructed semi-variograms of CO2 emissions to understand their spatial variation [32] 

(Figure 3); detailed information of the method is shown in the supplementary material. The well-

known geo-statistical concepts of nugget and sill represent the values at which the semi-variogram 

almost intercepts the y-value, and the values at which the model first flattens out, respectively [33]. 

The greater the sum of nugget and sill, the larger the spatial variation of CO2 emissions [34]. The 

results indicate that the spatial variation of emissions was much larger at 30 m resolution than at 500 

m resolution. At 30 m and 500 m resolution, the largest spatial variations were both recorded for 

transport emissions among the different sectors (Figure 3d,h). 
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Figure 3. Semi-variograms of different sources of CO2 emissions from the 30 m resolution maps (a–d) 

and the 500 m resolution maps (e–h). (a) and (e) show total CO2 emissions. (b) and (f) show residential 

CO2 emissions. (c) and (g) show industrial CO2 emissions. (d) and (h) show traffic CO2 emissions. 
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3.2. Propagated Uncertainties Caused by Gridded Model 

3.2.1. Results of the Uncertainty Estimation, Using U1 

The logarithms of the mean and standard deviation of spatial proxies for CO2 emissions were 

obtained by fitting the PDFs (Figure 4). Smaller KS test values indicated better PDF fits. The KS test 

values of different maps and sectors were all less than 0.3, and were considered as good fits. The 

fitting performance of the 500 m resolution map was better than that of the 30 m resolution map. 

Based on the PDF fitting, we drew the curves of simulated and real CDFs for different resolutions 

(Figure 4). The CDFs represents the number (i.e., cumulative probability density) of each grid value 

occupied with the total number of grids. The CDF curve is an ascending order by x value. Hence, the 

cumulative probability density of a larger x value is almost 1. The uncertainty was the area between 

the two curves (gray area in Figure 4). The uncertainty of any pixel value was the difference between 

the y coordinates of the two curves when the pixel value was the corresponding x value. Comparison 

of the CDF curves of simulated emissions with actual emissions (Figure 4) showed that the 

uncertainty of the residential emissions was the smallest, while that of transport emissions was 

slightly larger, and that of industrial emissions was the largest. Overall, the uncertainty in the 500 m 

resolution map was smaller, and tended to decrease as CO2 emissions increased. In comparison, the 

uncertainty in 30 m CO2 emissions showed no significant change as CO2 emissions increased. When 

comparing the different sectors, there was less uncertainty regarding residential emissions in both 

the 30 m and 500 m resolution maps, which was represented by the coincident two color curves 

(Figure 4b,f). Uncertainty in industrial emissions was very large (up to nearly 80%) at 20,000 t/pixel, 

but it gradually decreased, and stayed within 10% beyond 20,000 t. The uncertainty on the 30 m map 

was almost always maintained at about 40% (Figure 4c,g). When the transport discharge pixel value 

was between 300 and 600 t, the uncertainty was small, but then gradually decreased with increasing 

pixel values on the 500 m map. There was always about 30% uncertainty in the 30 m map (Figure 

4d,h). 
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Figure 4. CDF curve of different CO2 emissions at 30 m and 500 m resolution. The upper figures are 

at 30 m resolution, while the lower figures are at 500 m resolution. The red line is the distribution of 

the real values, while the blue line is the distribution of the simulated values. (a) and (e) are the total 

CO2 emissions, (b) and (f) are the residential CO2 emissions, (c) and (g) are the industrial CO2 

emissions, and (d) and (h) are the transport CO2 emissions. KS., Kolmogorov–Smirnov; Sd, Standard 

deviation. 
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The uncertainty map for the gridded model was generated by a look-up table (Figure 5). Among 

the uncertainty maps of total and industrial CO2 emissions (Figure 5a,c,e,g), the number of grids 

whose uncertainty reached 100% accounted for more than 80% of the area. However, most of the 

corresponding CO2 emissions of these grids were equal to zero. Most grids below 100% located in the 

residential and industrial areas of Jinjiang city. For the uncertainty maps of residential CO2 emissions 

(Figure 5b,f), almost half of the grids of the 30 m resolution uncertainty maps have low uncertainty 

(i.e., the average value of the uncertainty grids was 0.969%). With the other resolution map, most 

uncertainty grids were less than 25%. For the uncertainty maps of transport CO2 emissions (Figure 

5d,h), most non-100% uncertainty grids were distributed along the roads. Compared with the 500 m 

resolution uncertainty map, the 30 m resolution uncertainty map had more 100% uncertainty grids. 

Furthermore, other grids of the 30 m and 500 m resolution uncertainty maps were below 50%. 

 

Figure 5. Uncertainty maps made by the gridded model of CO2 emissions in Jinjiang city, at 

resolutions of 30 m (a–d) and 500 m (e–h). (a) and (e) show uncertainty maps of total CO2 emissions. 

(b) and (f) show uncertainty maps of residential CO2 emissions. (c) and (g) show uncertainty maps of 

industrial CO2 emissions. (d) and (h) show uncertainty maps of transport CO2 emissions. 

3.2.2. Results of the Uncertainty Estimation Using U2 

The statistical terms and population distributions (sums of the grid values) were obtained based 

on the bootstrap sampling method described in the methods section. Then, the uncertainties and CIs 

were calculated (Figure 6, Table 1), the smallest uncertainty was obtained for residential emissions 

(12.84% and 7.68%), while CO2 emissions from industry remained the main source of uncertainty. 

Transport emissions were relatively small, with a small uncertainty. The uncertainty of the 500 m 

resolution map was far less than that of the 30 m resolution map. Since the range of 95% CIs on the 

500 m resolution map was much smaller than that on the 30 m resolution map, the estimated overall 

CO2 emissions of the 500 m resolution map were also closer to the calculated value. The relationship 

between the overall uncertainty of emissions and the uncertainty of the three sectors was not a simple 

linear superposition, with it presenting a nonlinear change, because the overall uncertainty was less 

than the sum of the uncertainty of the three sectors. The estimated total emissions were similar than 

the normal distribution based on 10,000 simulations (Figure 6). Only the estimates of residential 

emissions in the 30 m resolution map showed a right-skewed distribution (Figure 6b). 
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Table 1. Uncertainty in CO2 emissions (x 103 t) from different sectors from the 30 m and 500 m 

resolution maps. 

Source 
95 CI (Range %) Mean Uncertainty 

30 m 500 m 30 m 500 m 30 m 500 m 

Residential 
2304 to 2970  

(−11% to +14%) 

2401 to 2799 

(−8% to +8%) 
2596 2596 12.84% 7.68% 

Industrial 
9744 to 18,170 

(−29% to +32%) 

11,917 to 15,591 

(−13% to +14%) 
13,759 13,731 30.62% 13.38% 

Transport 
240 to 357  

(−19% to +20%) 

274 to 323  

(−8% to +8%) 
297 298 19.67% 8.19% 

Total 
12,289 to 21,498 

(−26% to +29%) 

14,593 to 18,714 

(−12% to +13%) 
16,653 16,624 27.65% 12.40% 

Notes: the uncertainty is equal to the mean value of CO2 emissions for the selected grid in the bootstrap sampling 

method divided by the 95% CIs width of CO2 emissions at the selected grid in the bootstrap sampling method. 

CI, confidence interval. 
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Figure 6. CO2 emission population (statistic term) distributions of different sectors. The left figures 

are at 30 m resolution, while the right figures are at 500 m resolution. The red line is the distribution 

of the real values, and the blue line is the distribution of the simulated values. (a) and (e) are the total 

CO2 emissions, (b) and (f) are the residential CO2 emissions, (c) and (g) are the industrial CO2 

emissions, and (d) and (h) are the transport CO2 emission. 
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3.3. Propagated Uncertainties Caused by Input 

3.3.1. Results of the Uncertainty Estimation Using U3 

The constructed uncertainty maps for activity levels showed that the mean value of uncertainties 

for the grids of the 30 m resolution map was 37.30%, while that of the grids of the 500 m resolution 

map was 33.10%. The 95% CIs and uncertainty for residential, industrial, transport, and total activity 

levels were 1573 to 3594 (−39.13% ~ 39.08%), 11,005 to 16,424 (−19.81% ~ 19.67%), 205 to 392 (−31.25% 

~ 31.59%), and 13,697 to 19,490 (−17.52% ~ 17.36%) thousand tons, and 39.11%, 19.74%, 31.42%, and 

17.44%, respectively. The 95% CIs of the activity levels of the different emission types were within 

±2σ. The 95% CIs of the total emissions were within ±20%, and had the lowest uncertainty compared 

to all of the sectors. The number of pixels with high uncertainty was greater in the 30 m resolution 

maps compared to the 500 m resolution maps (Figure 7). The uncertainties in the middle industrial 

areas and the northeastern built-up areas were smaller in both the 30 m and 500 m resolution maps 

(uncertainty was below 30%). Large areas with low uncertainty in the northern part of the 500 m 

resolution map had high uncertainty in the 30 m resolution map. Low uncertainty grids were 

scattered and fragmented in the 30 m resolution map (Figure 7a), but presented a continuous 

distribution in the 500 m resolution map (Figure 7b). 

 

Figure 7. Map showing the uncertainty caused by activity levels. (a) and (b) represent the uncertainty 

maps of total CO2 emissions at 30 m and 500 m resolution, respectively. 

3.3.2. Results of the Uncertainty Estimation Using U4 

U4 represents the uncertainty maps made with spatial proxies. The value of grids in the 30 m 

resolution map, which were regarded as the wrong grids, were generated by the product of average 

value of selected grids and a random error for residential, industrial, and transport emissions, were 

19.85%, 20.00%, and 19.86%, respectively, while the total error was 33.67%. The errors in the spatial 

proxies of the distribution of residential, industrial, and transport emissions were 19.98%, 19.98%, 

and 19.98%, respectively, in the 500 m resolution map, while the total error was 24.35%. The overall 

error was greater than any initial error, and was less than the sum of the errors for the three sectors. 

The overall error presented a nonlinear change. The 500 m resolution map had less uncertainty than 

the 30 m resolution map. When there was a random error in spatial proxies, most areas overestimated 

emissions, with the errors of the urban areas and industrial areas with high emission intensity being 

large (Figure 8). 
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Figure 8. Maps of uncertainty caused by the spatial proxies. (a) and (b) represent the maps of 

uncertainty of total CO2 emissions at 30 m and 500 m resolutions. 

4. Discussion 

4.1. Uncertainties 

The process of mapping CO2 emissions is characterized by various uncertainties. Gurney [35] 

identified challenges in quantifying uncertainties in CO2 emissions, and suggested solutions, such as 

sensitivity testing of key inputs and parameters that are fully propagated through the estimation 

system. In this study, an analytic workflow inspired by the concept suggested by Gurney [35] was 

proposed to determine uncertainties at the urban scale. 

Differences between estimations and actual emissions were generally used to measure the 

overall uncertainty in the estimation of emissions. Ou et al. [36] used relative error, mean relative 

error, and root mean square error to evaluate differences between actual and estimated data. This 

study used the CDF, which provided a description of the grid distribution features and allowed a 

comparison of the differences. The results indicated less uncertainty for residential emissions, which 

was in contrast to the uncertainties obtained from global mapping products. Andres et al. [21] 

analyzed uncertainty in three inputs of the CDIAC data product, and attributed 51% of the 

uncertainty to population data. Therefore, more accurate and detailed data were used to construct 

the population density gridded maps and reduce the uncertainties in this study. The results 

suggested that industrial emissions were the main uncertainty source in estimating urban CO2 

emissions. 

Several studies have investigated uncertainties caused by total CO2 emission estimations that 

are known to generate fundamental uncertainties [18,37]. Inventory accounting generates the 

quantities of total emissions that are eventually mapped. Since the uncertainties in activity levels and 

emission factors vary by sector and country, respectively, this study set the a priori uncertainty with 

normally distributed activity levels referenced by the paper of Zhao et al. (2012) [19]. Moreover, this 

study reported a greater, 95% CIs for total emissions than [19] did (−9 to 11%). The uncertainty 

estimated in this study (17.4%) was less than that determined from the CDIAC data for China (17.5%) 

[21]. These results could be attributed to the following reasons. First, this study focused on the 

propagation of uncertainty in activity levels during the gridding process. In contrast, Zhao et al. 

(2012) quantified uncertainty in the total CO2 emissions estimation of China through providing a 

detailed inventory while without quantifying uncertainties for the gridded process. Second, the 
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trends for uncertainties in the total emissions and in the sums of emissions from different sectors 

were similar to those reported by Zhao et al. (2012) [19]. The uncertainty caused by the total emission 

estimations was significantly reduced by calculating the detailed inventories from different sectors, 

likely due to the “compensation of error” phenomenon that was realized through Monte Carlo 

simulations [19]. Finally, in contrast to Zhao et al. (2012), the higher uncertainty detected in this study 

could be attributed to the lack of detailed source categories. However, a comparison of results from 

the current study and the CDIAC indicated acceptable uncertainty levels. 

Geospatial datasets were primarily used to obtain more accurate spatial proxies and reduce 

uncertainties in the gridded process. Uncertainties caused by spatial proxies also varied across 

different sectors. For instance, uncertainties in residential emissions were mainly attributed to errors 

in the generation of high-resolution population grids [21]. However, high population fitting accuracy 

at the street and town scales was generated in this study, and such spatial proxies of population were 

used to map residential emissions. Additionally, uncertainties in industrial emissions were mainly 

driven by the accuracy of industrial point-source data identification and the extent to which night 

time light intensity represented emissions intensity (saturation of bright lights [4]). Raupach et al. [38] 

indicated that correcting the saturation error of nighttime light imagery increased data values by 

1.15–1.23 times, leading to greater uncertainty. Uncertainties in transport emissions existed, since 

road areas do not fully represent the intensity of CO2 emissions from traffic. Previous studies used 

traffic congestion conditions to calculate this parameter [39–41]. However, such data are difficult to 

acquire. Therefore, road area is generally used as a proxy in this research. Although road area is 

correlated with traffic jams and vehicle speed, it might not fully reflect traffic conditions [42]. 

In this study, data from the three sectors were ultimately spatially superimposed during the 

gridded process and represented the process of assigning spatial proxies. The U4 set 20% of the 

random errors in spatial proxies. Therefore, uncertainties caused by the total emission estimations 

were driven by the superimposition of interference from different sectors, were significantly less than 

60%, and indicated a nonlinear increase. These results are supported by previous research on error 

transfer in cellular automaton models [43]. Yeh et al. [43] proposed that the errors in data sources did 

not propagate entirely to the final results. This means that the errors may be reduced after model 

processing, because their effects significantly decline during simulations. This argument is based on 

the assumption that the neighborhood calculation principle smooths errors. Therefore, the random 

error of total emissions was reduced by the compensation-of-error phenomenon, which is attributed 

to overlaying emissions from different sectors. Although the total quantity of emissions was stable 

for the whole city, errors increased at finer spatial resolutions. This finding is consistent with the 

results of Dong et al. [44], who mapped uncertainties in land use impacts on ecosystem services. 

Therefore, the impacts of spatial proxy errors on uncertainty were lower in coarse-resolution maps. 

This might be because fine-resolution maps have larger spatial variation in CO2 emissions than 

coarser-resolution maps. Dale et al. [45] attributed uncertainty in their model to an inadequate 

representation of spatial variability in natural elements. Spatial scale has been shown to significantly 

impact the spatial variation and distribution patterns of natural elements [46]. In this study, the fine-

resolution map indicated higher spatial variation and larger uncertainty (Figure 3) than the coarse-

resolution map. These results are supported by Ogle et al. [47], who reported that uncertainty was 

negatively correlated with spatial scale in their study on soil organic carbon. Cias et al. [48] analyzed 

uncertainty in CO2 emissions at the sub-national scale for 25 member states of the European Union, 

and concluded that uncertainty significantly increased when the resolution was smaller than 200 km. 

Therefore, multi-scale research is required to establish critical thresholds for scale selection [49–51]. 

The analytic workflow for uncertainty propagation proposed in this study may aid decision-

makers in designing suitable low-risk policies. Regions with high emissions values and low 

uncertainties (industrial sources with emissions greater than 20,000 t/pixel and residential areas) 

could be the primary targets for emission reductions (Figure 4c). Therefore, the northern urban living 

areas and central regions could reduce emissions by promoting the development of low-carbon 

communities, and implementing energy-conservation and emission-reduction technologies. 

Furthermore, this study contributed to the research field of uncertainty analysis of urban scale CO2 
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emissions by proposing an analytic and reproducible workflow consisting of four submodules to 

investigate the uncertainty propagation during the gridding process caused by the gridded model 

and input. Previous studies used Monte Carlo simulation to estimate the uncertainty in CO2 

emissions caused by inputs [10–12,15,52,53], the remaining studies used inventory comparison 

analysis to evaluate this uncertainty [5,25]. However, few studies considered the uncertainties caused 

by both the gridded model and the input. Furthermore, inventory comparison analysis is impossible 

at the urban scale due to the lack of a detailed emission inventory. The studies developed different 

uncertainty metrics and tools such as PDFs, the bootstrap sampling method, fuzzy mathematics, the 

95% Cis, and relative uncertainty [54–57], which could provide the reference for our workflow. 

Moreover, some studies which retrieved CO2 emissions using atmospheric models used data 

assimilation technologies in an attempt to estimate and reduce the uncertainty in CO2 emissions 

[53,58]. These are novel technologies that can estimate the uncertainty but require complex 

atmospheric models and high-quality flux monitoring data. Compared with previous related studies, 

involving the construction and uncertainty propagation analysis of gridded maps of CO2 emissions, 

the workflow combined various methodologies of uncertainty analysis, including Monte Carlo 

simulation and the bootstrap sampling method, and enabled finding the completed uncertainties 

caused by the gridded model and input without detailed emission inventories, field measurements, 

or integration of complex atmospheric models. 

4.2. Future Research Directions 

Gridded CO2 emissions maps are likely to play an important role in climate change mitigation 

and sustainable development. Therefore, three future directions in this regard are proposed in the 

following sections based on a review of previous studies. 

Advances in earth observation satellites and related technologies have enabled accurate, high-

resolution quantification of CO2 emissions. Gridded CO2 emissions maps can be developed based on 

data obtained from night time light and greenhouse gas monitoring satellites [59–61]. However, 

relationships between night time light intensity and CO2 emissions are largely empirical [4,62]. 

Greenhouse gas monitoring satellites determine the actual concentrations of the CO2 column at low 

resolutions [63–65]. These limitations can be addressed by advances in earth observation satellites 

and implementation of novel technologies, including the development of satellites such as the LuoJia 

1-01 and TanSAT [66–68]. However, limitations in estimating uncertainties in satellite-retrieved 

products still exist. The U4 which was developed in this study regarded a priori error of spatial input 

data or the quality assessment of satellite products as the uncertainty to estimate the uncertainties of 

gridded CO2 emissions maps. When we used remote sensing satellite products (such as MODIS-

derived NDVI products) as input data, the satellite’s quality assessment files could be used to define 

a priori error, and to subsequently conduct uncertainty analyses [69]. 

The combination of carbon flux monitoring data and atmospheric models is essential for 

developing spatially explicit bottom-up CO2 emissions models. The bottom-up approach can estimate 

CO2 emissions with a high accuracy [22]. However, it requires high-quality and spatiotemporal 

resolution input data. For instance, the use of 14CO2 measurements can significantly assist the 

estimation of emissions from biological and fossil carbon pools [70–72]. Carbon flux monitoring data 

include anthropogenic and biogenic CO2 emissions [73]. However, long-term data on CO2 emissions 

and carbon fluxes are limited. Therefore, long-term carbon flux monitoring networks need to be 

established [74]. Although the Hestia and Anthropogenic Carbon Emissions System products have 

been used to develop spatially explicit CO2 emissions models, most data were obtained from the 

Indianapolis, Salt Lake City, Baltimore, and Los Angeles flux experiments [73]. However, such 

experiments are uncommon, and these studies coupled carbon flux monitoring data with 

atmospheric or chemistry transport models, such as the weather research and forecasting (WRF) 

model, the WRF model coupled with chemistry, the WRF Model coupled with the vegetation 

photosynthesis and respiration model, etc. [75,76]. Therefore, future studies (especially in China) 

should focus on different combinations of carbon flux monitoring data and atmospheric models. 



Remote Sens. 2020, 12, 3932 20 of 24 

 

Data assimilation technology allows the integration of satellite observation and model output 

data from atmospheric and oceanic models. Some studies have applied four-dimensional data 

assimilation of atmospheric CO2 using atmospheric infrared sounder observations [77]. However, 

studies focusing on data assimilation for CO2 emissions are limited because the coupled atmospheric 

model is difficult to construct and run. Moreover, there is a lack of satellite observations at a fine 

spatiotemporal resolution, and/or carbon flux monitoring data. The key components of data 

assimilation include observation data, uncertainty in observations, model outputs, uncertainty in 

model outputs, and data assimilation algorithms. Therefore, our workflow for uncertainty analysis 

is a powerful tool to aid data assimilation. Future research could focus on the integration of the 

present workflow with different data assimilation algorithms. 

5. Conclusions 

In this study, an analytic workflow was established to conduct uncertainty analyses. The 

workflow included four submodules which were used to evaluate the uncertainties which were 

propagated during the gridding process. The first and second submodules were designed to 

investigate the uncertainties of gridded CO2 emissions maps caused by the gridded model. The third 

and fourth submodules were used to analyze the uncertainties of the gridded CO2 emissions maps 

caused by the input. The results of our study demonstrated that different uncertainties were 

associated with the gridded process according to the statistical graph and gridded maps. 

Furthermore, we found that the uncertainties in the coarse-resolution map had a lower contribution 

to the uncertainties caused by the total emission estimations and spatial proxies. This may have been 

due to the fact that the fine-resolution map had a larger spatial variation in CO2 emissions. 

Furthermore, a nonlinear mapping relationship between the sum of the uncertainties of the gridded 

CO2 emissions maps among the different sectors and the final estimated uncertainties was found 

when the uncertainties of different sectors were spatially superimposed. This nonlinear relationship 

was attributed to the “compensation of error” phenomenon. That is, the overestimated and 

underestimated values among different sectors were offset at the same grid. In conclusion, this study 

provides the corresponding uncertainties of baseline data for developing low-carbon cities, as well 

as a general workflow for analyzing uncertainties in gridded CO2 emissions maps. 
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