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A B S T R A C T   

Compact development is one of the most effective solutions for sustainable urbanization under the rapid growth 
of the urban population. Great efforts have been made to measure urban physical compactness while limited 
attention has been paid to functional zoning of urban areas. Here, we introduce a novel index, called the 
functional compactness index (FCI), to quantify urban functional compactness through the integration of geo
spatial data sources, including Points of Interest (POIs) data, Road Network of OpenStreetMap (RNO) data, and 
National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light 
data. The FCI does not require the analysis of the grid scale and thus, is technically simpler than conventional 
compactness index (CI). We examined the effectiveness of FCI on estimating urban compactness under four land 
use scenarios and in four Chinese cities. The results suggest that: (1) the FCI can comprehensively reflect the 
intensity of human activity, the differentiation between residential zones and other functional zones, and the 
mixing degree of different functional zones; (2) the FCI is not affected by the service radius of residential zones; 
(3) the FCI can reflect the overall and local-scale functional compactness of a city; and (4) the FCI can be used to 
effectively compare spatial characteristics of functional compactness among different cities. In conclusion, the 
FCI considers the rationality of urban functional layout, which not only is helpful for urban planning, but also 
enriches the quantitative methods of urban compactness evaluation.   

1. Introduction 

The rapid increase in global urban population and fast urban sprawl 
in the past decades have caused various social and environmental 
problems (Bierwagen, 2007; Burchell and Mukherji, 2003; Frumkin, 
2002; Gong et al., 2012; Hampton, 2010; Huang et al., 2018, 2007; Lo, 
2004; Stone, 2008; Sturm and Cohen, 2004; Tannier et al., 2012; Zhao 
et al., 2014). In order to solve these problems, researchers, policy 
makers, urban planners and designers have proposed many ideas and 
methods, one of which is compact development. Since 1973 when the 
concept of a “compact city” was first proposed (Dantzig and Saaty, 
1973), researchers have focused on the concept, characteristics, func
tions, and feasibility of compact cities, as well as the relationships be
tween the compact development and sustainable development of cities 
(Anderson et al., 1996; Artmann et al., 2019a, 2019b; Breheny, 1997; 
Burton, 2000; Elkin et al., 1991; Ewing, 1997; Jia et al., 2019; Liu et al., 

2016; OECD, 2012; Richter and Behnisch, 2019; Wang et al., 2019; 
Williams et al., 2010; Xia et al., 2020; Zhao et al., 2014). The method
ology of measuring urban compactness has long been a challenge and 
popular topic, especially in the context of increasing the emphasis on 
landscape complexity in urban geographic analysis (Papadimitriou, 
2009, 2012). 

Although there is still no single unified definition of a compact city, 
researchers have reached the consensus that compact cities should at 
least be compact in both physical and functional terms (Burton, 2002; 
Dantzig and Saaty, 1973; Dempsey, 2010; Ewing, 1997; Galster et al., 
2001; Jabareen, 2006). The physical compactness of urban space has 
been investigated in a large number of studies. The focuses of those 
studies can be divided into four categories: (1) the physical character
istics of outer contours of urban built-up areas, including the Gibbs 
Compactness (Gibbs, 1961), Cole Compactness (Cole, 1964), and 
Richardson Compactness (Richardson, 1973); (2) the relationships 
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between patches of urban built-up area and specific locations, such as 
the compactness index proposed by Bertaud and Malpezzi (1999); (3) 
the degree of correlations between patches of urban built-up area, 
including the Thinh Compactness (Thinh et al., 2002); and (4) the 
building density (Galster et al., 2001). 

Due to the unclearness in the definition of urban functional 
compactness and the difficulty of data acquisition and accessibility, few 
studies investigated urban functional compactness. Currently, urban 
functional compactness is usually measured directly based on the degree 
of land use mixing or indirectly based on economic indicators. The 
assumption is that the higher the mixing degree of urban land use, the 
more compact the urban function. The assessment methods of urban 
land use mixing can be divided into three types (Ewing and Hamidi, 
2014): (1) Balance between jobs and population. Commonly used in
dicators include the ratio of the total number of jobs to the number of 
residents in the region, the ratio of service jobs to the number of resi
dents (Angel et al., 2018; Ewing et al., 2002; Song and Knaap, 2004), 
and the degree of mixing between residential land and non-residential 
land in the same area (Burton, 2002; Galster et al., 2001); (2) Dis
tances to walkable destinations. Commonly used indicators include the 
distance from a residential area to the nearest commercial area, the 
distance from a residential area to the nearest public institution, the 
distance from a residential area to the nearest industrial site, the dis
tance from a residential area to the nearest park (Song and Knaap, 
2004), the proportion of residents with shopping facilities within one km 
of their place of residence, and the proportion of residents with basic 
education facilities (e.g., primary schools) within one km of their place 
of residence (Ewing et al., 2002; Habibi and Zebardast, 2016); (3) Land 
use diversity. Commonly used indicators are the proportions of different 
types of land (e.g., commercial, residential, industrial, institutional, and 
parks) (Burton, 2002; Habibi and Zebardast, 2016; Song and Knaap, 
2004) and the entropy index (Lu et al., 2018; Musakwa and Niekerk, 
2013; Shi et al., 2016; Song et al., 2013). The three methods mentioned 
above are applicable to different research scales. The data required for 
methods (1) and (2) are generally obtained from questionnaires or field 
surveys, which require a large number of participants, material re
sources, and time, and are suitable for small-scale research such as 
blocks and communities. Method (3) is generally based on land use data 
obtained from remote sensing classification, which is suitable for large- 
scale research but cannot reflect the local functional compactness. 
However, the urban functional compactness reflects the rationality of 
urban layout based on functional zones, and the mixing degree of urban 
land use cannot express the rationality of urban layout based on func
tional zones. Therefore, the mixing degree of urban land use cannot 
explicitly indicate the urban functional compactness. 

The increasing availability of public source data provides new in
sights into urban functional compactness. Along with the wide appli
cation of mobile intelligent terminals, a substantial amount of public 
source data are being generated, including mobile phone signaling, GPS- 
derived urban traffic trajectories, and points of interest (POIs). These 
data are easy to access with a low cost, are frequently updated, and have 
wide coverages. Compared with traditional data (e.g., remote sensing 
images), these emerging public source data not only are available in 
much larger quantities, but also reflect human behaviors and activities 
(Zhong et al., 2020). Researches have applied public source data to 
identify urban functional areas (Long and Shen, 2015; Song et al., 2018). 
Additionally, great progress has been made in earth observation tech
nology using remote sensing and geographic information systems (GIS). 
A strong correlation has been found between the intensity of human 
activity and nighttime light intensity levels (Bennett and Smith, 2017; 
Xia et al., 2020), and nighttime light data have been widely used to 
estimate economic activity and detect and monitor urbanization 
(Elvidge et al., 1997; Lu et al., 2008). Compared with Defense Meteo
rological Satellite Program (DMSP) Operational Linescan System (OLS) 
nighttime light data, National Polar-orbiting Partnership (NPP) Visible 
Infrared Imaging Radiometer Suite (VIIRS) nighttime light data have a 

higher spatial and radiometric resolutions and can, therefore, better 
reflect the intensity of human activity (Bennett and Smith, 2017). 

The compactness index (CI) was originally proposed by Thinh et al. 
(2002) to quantify urban physical compactness based on a gravitation 
approach supported by a land use database and GIS raster analysis. The 
main advantage of the CI is that it considers the filling level of sealed 
settlement surfaces as well as the distances between land patches in a 
city. However, the CI can only evaluate the urban physical compactness, 
and cannot indicate the differences in functional aspects among cities. 
This leads to our attempt to develop a new method that can reflect the 
overall and local functional compactness of cities, can be used to 
compare multiple cities, and can comprehensively reflect the intensity of 
human activity, the differentiation between residential zones and other 
functional zones, and the mixing degree of different functional zones. A 
functional compactness index (FCI) for development should meet at 
least three requirements: (1) it can distinguish the differences in the 
urban functional compactness among cities; (2) its computation pro
cedure should be objective enough to ensure the soundness of its results; 
and (3) it should be suitable for large-scale research in term of input data 
avaibality. 

2. Data and study area 

2.1. Data source 

The POIs refer to zero-dimensional elements involving specific real- 
world locations, such as historical sites, landmarks, public service fa
cilities, shops, schools, and restaurants (Ye et al., 2019). The POIs used 
in this study were obtained from the Chinese internet map company 
Amap in 2018; each POI contains the name, category, longitude and 
latitude, address, and other information. The POIs are divided into 14 
categories, namely catering services, shopping services, science and 
education and cultural services, scenic spots, public facilities, corporate 
enterprises, transportation facilities services, financial insurance ser
vices, business housing, life services, sports and leisure services, 
healthcare services, government agencies and social groups, and ac
commodation services. All POIs were cleaned and coordinate-converted 
for backup. 

The NPP/VIIRS nighttime light data represent visible light (e.g., city 
lights, fishing-fleet lights, fires) captured by remote sensing satellites in 
cloudless conditions at night (Elvidge et al., 2013). These data were 
obtained from the National Oceanic and Atmospheric Administration’s 
National Geoscience Data Center (NOAA/NGDC). The original night
time light data are affected by cloud and include stray light, fires, and 
other ephemeral light. Therefore, annual composite data, in which the 
effects of these factors are reduced (Bennett and Smith, 2017), were used 
in this study. The annual composite data were available for 2015 and 
2016, and the 2016 data were used in this study. 

The Roads Network of OpenStreetMap (RNO) data are vector data for 
urban roads. First developed in University College London in July 2004, 
the OpenStreetMap (OSM) is a free, open source, editable mapping 
service created by the public (Haklay and Weber, 2008). OSM provides 
detailed information on road and road attributes, which can be used to 
map the basic spatial units required for analysis in this paper. We used 
the 2018 road network data, including roads and railways. Only above- 
ground railways were considered since these have an impact on the 
surface texture; underground railways were neglected since they have 
little impact on the surface texture. 

2.2. Study areas 

In order to explore the differences in functional compactness among 
cities of different sizes, we selected four Chinese cities whose urban 
areas have similar physical forms but which have different sizes as case 
studies, namely Beijing, Shanghai, Xi’an, and Xiamen (Fig. 1). Beijing 
(39◦28′–41◦03′N, 115◦25′–117◦35′E), the political center of China, is a 
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typical plain city with regular circular development. Shanghai 
(30◦40′–31◦53′N, 120◦52′–122◦12′E), the economic center of China, lies 
in the Yangtze River Delta alluvial plain on flat terrain. Xi’an 
(33◦25′–34◦27′N, 107◦24′–109◦29′E) is an important city in Western 
China with high terrain in the southeast, northwest, and southwest. 
Xiamen (24◦23′–24◦54′N, 117◦53′–118◦26′E), an important city on 
China’s southeast coast, is a typical topographically restricted city with 
coastal plains, platforms, and hills as its main terrain (Sun et al., 2019). 

3. The FCI development 

Compact urban function requires the effective mixing of urban res
idential zones, commercial zones, public service zones, transport zones, 
and other zones. In compact urban areas, people can carry out their daily 
activities within a small area, which maximizes the intensity of human 
activity in such areas. We developed the FCI, a comprehensive index that 
can indicate the intensity of human activity and the differentiation of 
residential zones and other zones as well as assist in mapping the mixing 
degree of different functional zones. Within urban areas, the FCI takes 
the street blocks in RNO data as the basic spatial analysis unit. Then, the 
FCI identifies the functional attributes of each street block according to 
the POIs. Finally, it uses NPP/VIIRS nighttime light data to determine 
the intensity of human activity in functional zones. 

3.1. Urban area and functional zoning 

3.1.1. Urban area 
In this study, POIs were used to identify the functional attributes of 

street blocks. The degree of correspondence between POIs and real- 
world locations is related to the accuracy of the functional zoning. 
Therefore, the urban areas which are rich in POIs were taken as the main 
research area. Urban areas are regions where economic, political, cul
tural, and other activities take place and are the core areas of urban 
public activities. Based on many experiments using nighttime light data 
in the United States, Imhoff et al. (1997) proposed the Sudden Change 
Detection method to map urban areas. Based on this idea, in this study, 
we extracted urban areas according to the change in POI density. Firstly, 
we analyzed the change trend of POI density in cities and thus extracted 
the POI density contour. The polygon corresponding to the density 
contour is the POI density iso-surface. The value of the density contour 
gradually decreases from the city center to the city limits, while the area 
of the iso-surface gradually increases from the city center to the city 
limits. When the area of the iso-surface changes suddenly, the threshold 
before sudden change was used to map the initial urban area. Finally, 
the largest area and the areas connected to the largest area by roads 
whose length does not exceed 500 m were set as the final urban area. 

3.1.2. Functional zoning 
The basic spatial units for analysis must be determined before 

dividing the functional zoning. Regular grids (e.g., square grids) (Thinh 
et al., 2002) and irregular grids (Song et al., 2018) are two main forms of 

Fig. 1. The study areas.  
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basic spatial unit. The street blocks used in this study are irregular grids. 
Street blocks are the basic units of urban form structure, urban function, 
urban management, and urban cognition (Jiang and Liu, 2012). Each 
street block has a dominant functional attribute, which is determined by 
the POIs that dominate the block. According to the Chinese national 
standard Code for the Classification of Urban Land Use and Planning 
Standards of Development Land, urban functions are divided into six 
categories: (1) residential zone, referring to the area zoned for resi
dential development; (2) commercial zone, referring to the area used for 
commercial development; (3) public service zone, referring to land used 
for government agencies and social organizations, press and other 
publications, scientific, education, and cultural services, and health and 
public facilities; (4) transport zone, referring to transportation infra
structure; (5) tourism/recreational zone; and (6) other zones. The clas
sification of POIs is shown in Table 1. 

After analyzing the POIs, it was found that the residential POIs have a 
smaller number of points; In contrast, commercial POIs, have a larger 
number of points. Specifically, a residential building is usually repre
sented by only one POI whereas a commercial building is usually 
denoted by many POIs. Therefore, different types of POIs have different 
weights when identifying the attributes of street blocks. The residential 
POIs were processed separately from the other four categories of POIs. 

Firstly, POIs were divided into two categories: residential POIs and 
non-residential POIs. The residential POIs include two categories: resi
dential POIs and commercial POIs (residential POIs in commercial 
zone). In order to map the residential zone more accurately, a correction 
index was added to the residential POIs to distinguish commercial POIs 
from residential POIs. This index was calculated using the kernel density 
of the commercial POIs, and the sudden change detection method 
described in Section 3.1.1 was used to define the commercial zone as the 
area where the commercial density undergoes a sudden change. The 
categories of non-residential POIs were identified based on the propor
tion of each kind of POI (Eq. (1)); for example, if commercial POIs ac
count for the largest proportion in a block, it can be determined that the 
block belongs to a commercial zone. The workflow of the mapping of 
functional zones is shown in Fig. 2. 

Fi =
ni

N
(1)  

where, i represents the type of POI under examination, ni is the number 
of POIs of type i in the research unit, N is the total number of POIs in the 
research unit, and Fi is the proportion of the number of POIs of type i to 
the total number of POIs in the research unit. 

After the classification of non-residential POIs, most of the blocks 
had been assigned attributes; however, there were still a small number 
of blocks for which the functional attributes could not be judged since 
there are no POIs in these blocks. For these blocks, the attributes were 
determined based on the size of the blocks. The functional properties of 

blocks with an area of more than 90,000 m2 were comprehensively 
judged based on Google Earth images and the attributes of the sur
rounding POIs, while blocks with an area of less than 90,000 m2 were set 
as transport zone, since 90,000 m2 is the average size of residential 
blocks in China. 

3.2. The FCI and its significance 

Street blocks were abstracted into points. A block corresponds to a 
point, and each point has two attributes: functional type and intensity of 
human activity. Among them, the functional type is determined by POIs 
and the intensity of human activity is extracted from NPP/VIIRS 
nighttime light data. The average nighttime light intensity of each block 
was used to represent the intensity of human activity in that block. Fig. 3 
shows an example of street blocks which were abstracted into the points 
that were required for the calculation of the FCI. Taking residential 
zones as the center, the gravitation between residential zones and the 
other four types of zone was calculated according to the gravitation 
formula (Thinh et al., 2002). The average gravitation between the in
tensity of human activity in the residential zone and that in another kind 
of zone is taken as the functional compactness between the residential 
zone and this other kind of zone (Eq. (2)). The functional compactness of 
a city is taken as the sum of the functional compactness of the residential 
zone and the functional compactnesses of the four other types of zone 
(Eq. (3)): 

FRX =
1

MN
∑

i∈φi

∑

j∈φj

1
c

RiXj

d2(i, j)
(2)  

FCI =
∑

FRX(X = 2, 3, 4, 5) (3)  

where, FRX is the spatial gravitation between the intensity of human 
activity of the residential zone and that of another zone; R represents the 
intensity of human activity of the residential zone; X represents the in
tensity of human activity of either the commercial zone, public service 
zone, transport zone, or tourism/recreational zone, in which cases it 
takes values of 2, 3, 4, and 5, respectively; φi is the set of point i;φj is the 
set of point j; Ri is the intensity of human activity of point i in the resi
dential zone; Xj is the intensity of human activity of point j in class X; d is 
the Euclidean distance between point i and point j; M is the total number 
of points in the residential zone; N is the total number of points in any of 
the other four classes; and c, equals 100 (nW cm− 2 sr− 1)2 m− 2, makes FRX 
non-dimensional and more readable. The FCI was used as the final es
timate of the urban spatial functional compactness of the city. The 
greater the value of the FCI, the more compact is the urban spatial 
function. 

4. Results 

4.1. The FCI examinations 

4.1.1. The mapping of urban area and the precision of functional division 
The POIs are zero-dimensional elements of geographic entities, and 

the closer they are to the city center, the more complete they are. 
Choosing an urban area with a relatively large amount of POIs as the 
research area can improve the division accuracy of functional areas to a 
certain extent. The availability of POIs, RNO data, and NPP/VIIRS 
nighttime light data makes it possible to compare the functional 
compactness of cities on a large scale. 

The functional zoning of each of the studied cities was obtained using 
the method in Section 3.1.2. Random points were generated for each city 
(Beijing: 199; Shanghai: 190; Xi’an: 180; Xiamen: 164). The properties 
of random points were judged using a combination of Amap street view 
images, Google Earth images, and nearby POI points. By comparing the 
attributes of random points with the attributes of functional zones, the 
division accuracy of functional zones in each city was obtained. The 

Table 1 
The classification of points of interest (POIs).  

Functional zoning POI 

Residential zone Residential community 
Commercial zone Restaurants, shopping services, life services, motorcycle 

services, car services, car sales companies, car maintenance 
companies, security services, financial insurance companies, 
banks, bank-related services, security companies, office 
buildings, general companies, accommodation services, 
sports leisure services, indoor facilities 

Public Service zone Scientific services, education and cultural services, 
government agencies and social organizations, medical and 
health services, public facilities, sports land 

Transport zone Airports, railway stations, transport services, road ancillary 
facilities, parking lots, ports, bus stations, railway stations 

Tourism/ 
recreational zone 

Places of interest, green land 

Other zone Bare land, agricultural land, water  
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determined accuracies were 95.48, 92.63, 94.44, and 87.20% for Bei
jing, Shanghai, Xi’an, and Xiamen, respectively. The blocks in the 
northern cities (Beijing and Xi’an) are more regular than those in the 
southern cities (Shanghai and Xiamen), and thus the accuracy of 

functional zone division is higher in the former cities; additionally, in 
the more developed cities (Beijing and Shanghai), the accuracy of 
functional zone division is higher. 

Fig. 2. The workflow of the mapping of functional zones.  

Fig. 3. Street blocks abstracted into the points that are required for the calculation of the functional compactness index (FCI). Points are used to represent the 
characteristics of street blocks. 
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4.1.2. Scenario analysis 
Based on the actual situation of urban planning, we examined the 

effectiveness of the FCI on estimating urban functional compactness 
under four land use scenarios (Fig. 4). The block size in all four scenarios 
is 300 m × 300 m. Scenarios a, b, and c simulate the changes in the FCI 
under the same intensity of human activity but for different degrees of 
land use mixing. Specifically, in scenarios a, b, and c, the commercial, 
public service, transport, and tourism/recreational zones are clustered 
together, and then the mixing degree between the residential zone and 
these four types of zone, respectively, are changed. In Scenario a, the 
residential, commercial, public service, transport, and tourism/recrea
tional zones are completely clustered and the residential zone is 
distributed among the four other types of zone. In Scenario b, the resi
dential zone is mixed with the four other types of zone and the resi
dential zone is partly surrounded by these four types of zone while other 
types of land are completely clustered. In Scenario c, the residential zone 
is mixed with the four other types of zone, however, the residential zone 
is completely distributed on the peripheries of the other types of zone. 
For the three scenarios, the value of FCI follows the order: Scenario b 
(75.75) > Scenario a (72.96) > Scenario c (57.46). This indicates that, 
for the layout in which the residential zone is surrounded by other zones, 
the degree of mixing between the residential zone and the other zones is 
greater, the average distance between the residential zone and other 
zones is shorter, and the urban function is more compact. Scenarios a 
and d simulate the relationship between the intensity of human activity 
and the FCI when the distribution of functional zones is exactly the 
same. In Scenario d, the FCI is 278.84, meaning that the overall intensity 
of human activity is greater than that in Scenario a. The results show 
that the higher the intensity of human activity, the more compact the 
urban function is. 

4.1.3. Analysis of the service radius of residential zones 
Additionally, we analyzed the relationship between the FCI and the 

service radius of residential zones. The service radiuses of residential 
zones for the four cities are shown in Fig. 5. By analyzing the changes in 
the FCI of all residential zones for different service radiuses, it was found 
that (1) when the service radius is within 1–8 km, the FCI increases 
rapidly with increasing service radius, (2) when the service radius is 
more than 8 km, the FCI increases less rapidly with increasing service 
radius, and (3) when the service radius reaches 20 km, the FCI is basi
cally stable with increasing service radius, with only a slight increase 
(Fig. 6). Therefore, it was concluded that it is unnecessary to consider 
the size of the residential service radius when calculating the FCI. 

4.1.4. Relationship between FCI and CI 
Fig. 7 shows the impervious surface areas in the urban areas of the 

Fig. 4. Values of the FCI for different degrees of functional zone mixing.  

Fig. 5. Service radiuses of residential zones.  

Fig. 6. The relationship between the FCI and the service radius of residential 
zones for the four studied cities. 
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four studied cities. Based on these impervious surface areas, the CI was 
calculated for each city, as shown in Fig. 8. As can be seen in the figure, 
the calculated CIs were different for the four cities. The CI is lowest in 
Shanghai. This can be attributed to the city’s large size and the fact that 
it is divided into two parts by the Huangpu River. The CI of Beijing is the 
second-lowest. Xi’an and Xiamen, which are smaller than Beijing and 
Shanghai, have the second-highest and highest CI, respectively. There 
were significant differences in the FCI and CI among the four cities. The 
FCI in Xiamen was the largest (8.59), followed by Xi’an, Shanghai, and 
Beijing. 

The FCIs for residential and commercial zones (FR2), residential and 
public service zones (FR3), residential and transport zones (FR4), and 
residential and tourism/recreational zones (FR5) are shown in Table 2. 
The FCI between residential zones and public service zones is relatively 
large, which indicates that the distribution of public service zones and 
residential zones match well. The spatial gravitation between residential 

zones and tourism/recreational zones is relatively small, which means 
that the distribution of residential zones is not well matched with that of 
tourism/recreational zones; however, Shanghai is an exception to this, 
since its main tourist sights are located in the downtown business dis
trict. Of the four cities, Beijing has the highest FCI between residential 
and public service zones, Shanghai has the highest FCI between resi
dential and tourism/recreational zones, and Xi’an and Xiamen have the 
highest FCI between residential and transport zones. 

On the whole, the FCI values of the four cities are inversely pro
portional to the city size. Taking the geometric center of the city as the 
origin and circular buffer zones with radiuses increasing from one km to 
the city limits, the FCI was calculated for different radiuses (Fig. 9). In all 
cities aside from Xiamen, the largest FCI was obtained for a radius of one 
km, with values of 1459 in Shanghai, 473 in Beijing, and 535 in Xi’an. 
With increasing circle radius, the FCI values decreased sharply. For ra
diuses of 1–13 km, Shanghai has the highest FCI, followed by Xi’an and 
Beijing, whose FCI values are similar, while Xiamen has the lowest FCI. 
For radiuses above 13 km, the FCI value of Xiamen is the highest, fol
lowed by Shanghai, Xi’an, and Beijing, which means that the intensity of 
human activity in Shanghai, Beijing, and Xi’an is low. That is, with 
expanding urban area, the FCI values of the larger cities—Beijing, 
Shanghai, and Xi’an—decline rapidly, while the FCI values of the 
smaller city—Xiamen—decline slowly and eventually surpass those of 
Xi’an and Beijing (at 10–11 km) and Shanghai (at 13 km). 

4.2. Intensity of human activity and functional types 

The intensity of human activity and the functional types are the basic 
data used to calculate the FCI. In order to facilitate their interpretation, 
these two data types were visualized using the ArcGIS software (Esri, 
Redlands, CA, USA; Fig. 10). 

4.2.1. Intensity of human activity 
Taking the central business district (CBD) of the city as the city 

center, rectangular strips with a width of one km were created in each of 
the four studied cities. Then, the total intensity of human activity in each 
strip was calculated (Fig. 11). It was found that the maximum intensity 
of human activity in each city is located in or close to the city center. For 
all four cities, the intensity of human activity gradually decreases from 
the city center to the city limits, increases again in the sub-center, and 
then decreases again. The intensity of human activity is the weakest at 
the edge of the urban area. Of the four cities, Beijing has the highest 
intensity of human activity, followed by Shanghai, Xi’an, and Xiamen. 
The areas with the highest intensity of human activity in Beijing are 
Beijing railway station, Wangfujing, Sanlitun, Shuangjing, and Beijing 
Antique City. The areas with the highest intensity of human activity in 
Shanghai are the Bund and Lujiazui. The areas with the highest intensity 
of human activity in Xi’an are mainly located within the ancient city 
walls and in the south of the city. The highest intensity of human activity 
in Xiamen is located on Xiamen Island, and there is little difference in 
the intensity of human activity across the city. 

Fig. 7. Impervious surface area of the study areas in the urban areas.  

Fig. 8. Values of the FCI and compactness index (CI) in the four studied cities.  

Table 2 
Functional compactness index (FCI) in the four studied cities and the FCI be
tween residential zones and commercial, public service, transport, and tourism/ 
recreational zones.  

City FCI FR2 FR3 FR4 FR5 

Beijing  4.69  1.06  1.34  1.29  1.00 
Shanghai  5.78  1.29  1.60  1.17  1.70 
Xi’an  6.63  1.48  1.83  1.90  1.41 
Xiamen  8.59  2.03  2.26  2.50  1.81 

Note: FR2 is the FCI between residential and commercial zones, FR3 is the FCI 
between residential and public service zones, FR4 is the FCI between residential 
and transport zones, and FR5 is the FCI between residential and tourism/recre
ational zones. 
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Fig. 9. The FCI measured within circles of different radiuses centered on the city center for the four studied cities.  

Fig. 10. Visualization of the intensity of human activity for different functional types.  
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4.2.2. Functional types 
A grid of 1 km × 1 km was established for each city except Xiamen, 

for which a grid of 0.5 km × 0.5 km was established due to the city’s 
smaller size. Street blocks were abstracted into points as described in 
Section 3.2. The number of points of each type of each grid were sum
med separately to obtain residential zone, commercial zone, public 
service zone, transport zone, and tourism/recreational zone. Then, the 
relationship between the residential zones and the other four types of 
zone was analyzed using the local indicator of spatial association (LISA; 
Anselin, 1995). Bivariate LISA maps between residential zones and other 
types of zone are shown in Fig. 12. On the whole, there is a positive 
spatial correlation between residential zone and the other four kinds of 
zone. For all four cities, H-H clusters (i.e., spatial clustering of high 
values (i.e., those that exceed the mean) [Pili et al., 2017]) are mainly 
distributed in the city center. Specifically, there are a large amount of L- 
H (low values [i.e., those that are lower than the mean] surrounded by 
high values) and H-L (high values surrounded by low values) clusters in 
the correlation analysis between residential zones and tourism/recrea
tional zones. Of the four cities, the correlation between residential zones 
and public service zones is strongest for Beijing, where L-L clusters (that 
is, spatial clustering of low values) are mainly distributed at the edge of 
the urban area. The correlation between residential zones and com
mercial zones is the strongest in Shanghai, and H-L clusters are 
distributed at the edge of the city. The correlation between residential 
zones and transport zones is strongest in Xi’an, where H-L clusters are 
also distributed at the edge of the city. The relationship between resi
dential zones and transport zones is strongest in Xiamen, where H-L 
clusters are distributed at the inner edge of Xiamen Island and outside 
Xiamen Island. 

5. Discussion 

5.1. Advantages of the FCI 

The FCI proposed in this study can be used to assess the rationality of 
city layouts based on the spatial distribution of functional zones. By 
considering four scenarios, it was found that the greater the intensity of 
human activity, the more compact the city functions, the more mixing 
there is between residential zones and other functional zones, and the 
more compact the city is. The results of this study show that the FCI can 
comprehensively reflect the intensity of human activity, the differenti
ation between residential zones and other zones, and the degree of 
mixing of different functional zones. However, the urban functional 

compactness cannot be effectively improved by simply mixing different 
types of functional zone while ignoring the locations of residential 
zones. By shortening the average distance between residential zones and 
other zones, urban activity can be increased and urban functional 
compactness can be improved. Moreover, this study found that the 
service radius of residential zones has no effect on the FCI. Different 
kinds of facility can have different optimal service radiuses (e.g., the 
service radius of primary schools should not be greater than 500 m and 
that of middle schools should not be greater than 1000 m). In this work, 
it was found that, with increasing service radius, the FCI first increases 
rapidly, then increases slowly, and finally reaches stability. Therefore, it 
is not necessary to consider the residential service radius when calcu
lating the FCI. Additionally, it was shown that the FCI can reflect both 
the overall functional compactness and local functional compactness of 
a city. It was found that Xiamen has the largest functional compactness 
of the four studied cities, with an FCI of 8.59, followed by Xi’an, 
Shanghai, and Beijing, with FCIs of 6.63, 5.78, and 4.69, respectively. By 
further analyzing the relationship between the FCI and city size, it was 
found that in the larger cities—Shanghai, Beijing, and Xi’an—the FCI is 
high in the center of the city and low in the periphery, and there are 
large regional differences in the intensity of human activity. However, in 
the smaller city—Xiamen—the intensity of human activity is more 
balanced and the overall functional compactness is optimal. 

5.2. FCI and CI 

The FCI is based on a gravitation equation and takes into account the 
spatial distances between parcels of a city, as does the CI (Thinh et al., 
2002). However, there are three main differences between the FCI and 
the CI: (1) The basic spatial units of the two indexes are different. The 
basic spatial unit of the CI is a regular grid, and the CI changes with 
changing grid scale; hence, it is necessary to analyze the scale and select 
the appropriate grid scale when calculating the CI. For example, Zhao 
et al. (2011) selected a 300 m × 300 m grid. Additionally, after evalu
ating the relationship between grid scale and the CI, Thinh et al. (2002) 
selected 500 m × 500 m as the final grid size. In this study, the irregular 
street block was taken as the basic spatial analysis unit for the calcula
tion of the FCI. As the basic spatial unit of the intensity of human ac
tivity, street blocks have unique advantages for reflecting the spatial 
layout of functional zoning. In the calculation of a city’s FCI, there is no 
need to consider the scale; (2) The data involved in the calculation of the 
indexes are different. The basic data needed to calculate the CI are the 
urban impervious surface area or urban built-up area (Jia et al., 2019), 
these data are generally obtained from remote sensing image classifi
cation or land use databases. On the other hand, the basic data required 
to calculate the FCI are urban functional zoning and the intensity of 
human activity, which can be obtained from the POIs and NPP/VIIRS 
nighttime light data, respectively; (3) The meaning of the two indexes is 
different. The CI, which is a physical compactness index, describes the 
degree of correlation between urban parcels, while the FCI considers the 
rationality of urban layout based on functional zones and reflects the 
gravitational attraction of the intensity of human activity in different 
functional zones. 

5.3. Extraction of urban areas and data processing 

In this study, urban areas were extracted for each city based on the 
change of the POIs density. In previous studies, the urban area has 
generally been obtained by extracting urban impervious surface area or 
built-up area from remote sensing image data (Jiao, 2015). For large- 
scale research, the collection and processing of remote sensing images 
is a time-consuming and laborious task. Therefore, in this work, it was 
chosen to extract urban areas using POIs in order to reduce the time 
requirements, which is conducive to the faster comparison of the func
tional compactness of multiple cities. Furthermore, since POIs in urban 
areas are more abundant than suburban areas, selecting urban areas as 

Fig. 11. An analysis of the intensity of human activity in the four studied cities. 
Taking the central business district (CBD) of the city as the city center, rect
angular strips with a width of one km were created for each city. Then, the total 
intensity of human activity in each strip was calculated. 
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the research target can improve the division accuracy of functional 
zones. 

The method of quantifying urban functional zones that was used in 
this study is different from that used in previous studies (Song et al., 
2018). In our study, POIs were divided into two categories, namely 
residential POIs and non-residential POIs. The achieved division accu
racy was above 87% for all four cities. Compared with the southern cities 
(Shanghai and Xiamen), the street blocks in the northern cities (Beijing 
and Xi’an) are more regular, and the division accuracy is consequently 
higher in the latter cities. Additionally, a higher division accuracy was 

obtained for the more developed cities (Beijing and Shanghai), which is 
consistent with the higher availability of POIs in these cities. The 
functional zoning method proposed in this paper has high accuracy and 
good applicability, thus validating the applicability of the proposed FCI. 

5.4. Limitations and prospects 

There are some shortcomings to this study. First, the intensity of 
human activity was estimated using only nighttime light data. However, 
due to the restriction of human movement and the protection of cultural 

Fig. 12. Local spatial correlations between residential zones and: commercial zones (R-2), public service zones (R-3), transport zones (R-4), and tourism/recreational 
zones (R-5). H-H indicates spatial clustering of high values (i.e., those that are larger than the mean); L-L indicates spatial clustering of low values (i.e., those that are 
lower than the mean); L-H indicates the spatial association of low values surrounded by high values; and H-L indicates the spatial association of high values sur
rounded by low values. 
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relics, nighttime light do not necessarily reflect the true intensity of 
human activity in some locations, which may introduce bias into the 
results of this study. In the future, the improvement in measuring the 
intensity of human activity would be helpful. Moreover, the POIs that 
were used in this study were obtained from the company Amap. 
Although a large amount of data are available, it cannot be guaranteed 
that all geographical entities are fully included, especially in suburban 
areas. This potential lack of data may lead to errors in the division of 
functional zones. For this reason, this study chose urban areas with 
relatively complete POI data while ignoring suburban areas. 

6. Conclusions 

In this study, we developed a novel index called FCI for quantifying 
the functional compactness of urban space. The performance of the FCI 
proved satisfactory. This index takes street blocks as the basic analysis 
unit and mainly considers the functional zoning and the intensity of 
human activity, unlike the CI and other indicators that only measure the 
physical compactness of cities. Four land use scenarios and four Chinese 
cities were considered to examine the effectiveness of the FCI. The re
sults show that the FCI is not affected by scale effects or the service 
radius of residential zones and thus, can reflect the overall and local 
functional compactness of a city. We found that the correlation between 
residential zones and other functional zones was different among the 
four studied cities, which could help infer the main characteristics of the 
cities (e.g., political cities, economic cities, and tourist cities). 

In the development and planning of big cities, on the one hand, it is 
necessary to consider the effective spatial matching of residential zones 
and other functional zones to reduce commuting time and improve the 
compactness of city; on the other hand, it is important to note that city 
“compactness” does not refer to a larger population or building density 
but appropriate population or building density. Therefore, future 
research on urban compactness should explore optimal ranges of 
compactness to help the sustainable development of cities. 
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