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Abstract: Cities are growing higher and denser, and understanding and constructing the compact 

city form is of great importance to optimize sustainable urbanization. The two-dimensional (2D) 

urban compact form has been widely studied by previous researchers, while the driving mechanism 

of three-dimensional (3D) compact morphology, which reflects the reality of the urban environment 

has seldom been developed. In this study, land surface temperature (LST) was retrieved by using 

the mono-window algorithm method based on Landsat 8 images of Xiamen in South China, which 

were acquired respectively on 14 April, 15 August, 2 October, and 21 December in 2017, and 11 

March in 2018. We then aimed to explore the driving mechanism of the 3D compact form on the 

urban heat environment (UHE) based on our developed 3D Compactness Index (VCI) and remote 

sensing, as well as Geo-Detector techniques. The results show that the 3D compact form can posi-

tively effect UHE better than individual urban form construction elements, as can the combination 

of the 2D compact form with building height. Individually, building density had a greater effect on 

UHE than that of building height. At the same time, an integration of building density and height 

showed an enhanced inter-effect on UHE. Moreover, we explore the temporal and spatial UHE het-

erogeneity with regards to 3D compact form across different seasons. We also investigate the UHE 

impacts discrepancy caused by different 3D compactness categories. This shows that increasing the 

3D compactness of an urban community from 0.016 to 0.323 would increase the heat accumulation, 

which was, in terms of satellite derived LST, by 1.35 °C, suggesting that higher compact forms 

strengthen UHE. This study highlights the challenge of the urban 3D compact form in respect of its 

UHE impact. The related evaluation in this study would help shed light on urban form optimiza-

tion. 

Keywords: urban compactness; three-dimension; urban form; urban heat environment; urban eco-

logical effect; geographic detector; remote sensing 

 

1. Introduction 

The urban form plays an important role in the accommodation of human urban ac-

tivities and has changed greatly during a period of rapid urbanization. One obvious 

change is the expansion of urban land to support rapidly growing urban populations. The 

urban population accounted for 55% of the world’s population in 2018 and is expected to 

grow to 68% in 2050 according to the 2018 revision of World Urbanization Prospects [1]. 
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Unlimited land expansion is not possible owing to limited land resources. Urbaniza-

tion is accelerating and the living standards of people are improving, while the current 

state of the urban environment should also meet the needs of sustainable development 

[2]. Intensive land use and a compact urban form have been suggested for the sustainable 

development of urban areas, which means high density and high diversity would be an 

effective urban frame [3]. 

There have been many studies on different compact urban forms since the 1960s. It 

has been concluded that the urban compact form has both benefits and challenges. Some 

scholars believe that urban morphology and its regulation are beneficial. The compact 

urban form contains a large population with short transportation and communication dis-

tances, which benefits infrastructure efficiency [4], environmental pollution reduction, 

and ecosystem maintenance [5]. For instance, a compact urban form centralizes public 

service facilities within walking distance, making public facilities more accessible [6]. The 

Barcelona Superblock model reconfiguration of the urban compact form and transport 

structures can help a city become greener and more resilient to climate change [7]. There-

fore, some technologies and strategies have been provided to optimize urban form 

through compactness method [8,9]. However, the compact urban form also has challenges 

from the point of view of land use and land cover changes [10]. These are mainly reflected 

in the following aspects: The compact environment results in a street canyon effect and 

urban local climate change, which will strengthen the urban heat environment (UHE) and 

increase building energy consumption. For example, excessive building density deterio-

rates UHE, resulting in more energy consumption and carbon emissions [11,12]. House-

hold building energy consumption grows with city compactness [13]. 

The urban heat island (UHI) is defined by a higher air and surface temperature in 

urban area relative to their rural surroundings. The land surface temperature (LST) is a 

strong indicator of the UHI that is known as surface UHI (SUHI): There are LST differ-

ences between urban suburban and nearby rural areas. Thermal infrared remote sensing 

represents the main technical approach for estimating LST [14]; the urban heat environ-

ment (UHE) is a physical environment system with urban surface temperature and urban 

air temperature as the core [15,16]. In the present study, the research scope of the urban 

heat environment includes surface urban heating (land surface temperature) and atmos-

pheric urban heating (air temperature). The urban heat environment (UHE) is determined 

by the energy balance of the urban area. Thus, different land covers, which have different 

geometry and thermophysical properties, play an important role in the UHE. For surface 

urban heating, studies have shown that variations in the land surface temperature (LST) 

were highest for an urban morphology of low-density and mid-height buildings and low-

est for arrays of high-rise and high-density buildings [17]. In most cities, increased imper-

vious surfaces and low tree cover densities represent the main driving processes that in-

crease summer daytime surface urban heating intensity [14]. There has been a significant 

negative relationship between LST and the mean patch size and shape index of the patches 

of green space in Beijing, China [18]. Similarly, there were also significant relationships 

between mean LST and the mean patch size and mean shape index of the patches of im-

pervious surface (positive) and green space (negative) in the Gwynns Falls watershed, 

Maryland, USA [19]. Future populations in compact cities will be at greater risk of UHE 

under ongoing fast rapid urbanization processing [20,21]. Dramatic urbanization has led 

to obvious urban heat phenomenon worldwide. The urban heat phenomenon has become 

an important issue of the urban natural and built environment that largely impacts on the 

urban ecology, building energy consumption, and human comfort and health [22]. With 

regards to the effect on energy consumption, the urban heat environment could play a 

different role during the heating and cooling seasons [23,24]. For example, on average, 

street canyons could experience a temperature rise of 2 °C in summer; the maximum 

warming effect is 4 °C in compact high-rise areas of Hong Kong. The high temperature in 

summer would directly affect thermal comfort and overall quality of urban life, and it 
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especially has a negative effect on summer habitat comfort because air conditioning sys-

tems increase cooling energy consumption and release a higher heat flux from the build-

ing to the outdoor air [25]. However, cities embrace their UHE as shields from extreme 

cold, and they provide considerable benefits in wintertime. The effect could be considered 

positive from the point of view of reducing heating energy consumption in winter [26]. 

Would compactness interventions have an impact on UHE? To answer this question, it is 

important to investigate the driving mechanism between UHE and the urban compact 

form [27]. 

Previous studies found that there were two ways of measuring the urban compact 

form, one based on comprehensive statistics of multi-index and the other based on urban 

space’s morphological characteristics. The former is similar to the indicator system for 

measuring urban sprawl proposed by Galster [28], or the four indicators proposed by Yu-

Hsin Tsai that characterized urban compactness [29]. The ratio between the number of 

Point of Interests (POIs) within the study area and the patch size of the study area cloud 

can also be used to measure the compactness of urban spatial structures [30]. The latter 

can also be indicated by the sky view factor (SVF), building density, and floor area ratio 

(FAR) [31]. SVF has been widely used to measure the visible sky of streets and urban ge-

ometry, which is a micro-scale parameter that is computed as the ratio of the vertical vis-

ible sky within a given reference circle [32]. Thinh et al. used Newton’s law of universal 

gravitation to construct a two-dimensional (2D) compactness index [33]. They applied ge-

ographic information technology to urban land gridding and calculated the average grav-

itation between each pair of urban land grids. As the spatial gravity strengthens, the urban 

spatial compactness increases and the urban spatial structure becomes more compact. In 

order to eliminate the scale discrepancies among cities, Zhao et al. constructed a Normal-

ized 2D Compactness Index (NCI) of the urban compact form by using a contrasted circle 

that had the same urban construction area [34]. An NCI is thus more scientific for com-

paring the degrees of compactness of different cities [35]. There are also a variety of land-

scape metrics that were used to quantify the compactness of cities, such as the mean patch 

fractal dimension and the mean shape index [36]. The fractal dimension of urban agglom-

erations is also a measure of their compactness, i.e., compact cities usually have large val-

ues of fractal dimension [37]. Similarly, the landscape shape index has been used as a po-

tential indicator of urban form development in landscape ecology worldwide and was 

introduced to indicate the divergence of the shape of a landscape patch from a circle that 

is considered ideal [38]. The shape index as an urban morphology element was also ap-

plied to each individual cool- and hot-spot feature, with the aim of providing a measure-

ment of geometrical complexity of the hot-spot pattern. A recent study found that the 

shape index value of the extreme level was closely related to square or circular geometries, 

revealing that the highest average LST value of the study area was associated with a more 

regular shape than the corresponding cool-spot level [39]. 

However, the above methods included sky view factor (SVF), building density, land-

scape metrics, and Normalized 2D Compactness Index, which mostly analyzed the com-

pactness of the 2D urban form. In reality, urban form is shown as three-dimensional; the 

vertical dimension could not be ignored for urban compact form construction. As urban-

ization continues, urban areas are not only growing denser, but are also growing higher. 

Thus, 2D urban form is not enough to capture the real urban compactness, while three-

dimensional (3D) compactness is needed to accurately measure the form of the real city 

[40]. At the same time, UHE changes along with the development of urbanization. It is of 

great importance to precisely construct a compactness form in 3D and explore how the 3D 

compact morphology effects UHE. Therefore, we developed the Normalized 3D Compact-

ness Index (NVCI) based on previous breakthroughs of the Normalized 2D Compactness 

Index (NCI), as well as the Law of Gravitation [41]. Then, based on the 3D compactness 

form and the NVCI model, the driving mechanism between urban 3D compactness and 

UHE would be improved. 
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Previous studies have highlighted the importance of factors related to the urban com-

pact form and, in general, of geographical characteristics of cities (such as distance from 

the sea or from large water bodies) in the study of the UHE. Because the mitigation effect 

of the sea, i.e., sea breeze, the surface urban heating was always less intense and less evi-

dent in coastal metropolitan cities than in inland ones, though little attention has been 

paid to coastal cities [14]. However, the surface urban heat in coastal cities could not be 

ignored due to their unique geographical location and climatic conditions. The sea is likely 

to play a role in mitigating surface urban heating, as the temperature variations in water 

are relatively small compared to built-up areas [42]. In this study, using the Thermal In-

frared Sensor (TIRS) on-board Landsat 8, we derived the LST from the five Landsat 8 im-

ages of the coastal city of Xiamen’s central urban area, acquired respectively on 14 April 

15 August, 2 October, and 21 December in 2017, and 11 March in 2018. The objectives of 

the present study are: (1) To evaluate the driving mechanism of urban 3D compact form 

on the UHE in example central urban areas of the coastal city of Xiamen, P.R. China, by 

using our developed 3D compact model based on Newton’s law of universal gravitation, 

geographical information system (GIS), remote sensing, and geo-detector and statistical 

analysis methods. (2) To demonstrate the advantage of 3D compact form by comparing it 

with 2D compact form. An understanding about how the urban 3D compact form effects 

UHE will contribute to improving the UHE and help to build a sustainable urban form. 

2. Study Area 

The research area, Xiamen, is a coastal island city on the southeastern coast of China, 

which is known for good habitat and rapid urbanization (Figure 1) [43]. The urbanization 

rate in this city was only 64% in 1980 but quickly grew to 86% in 2007. In 2019, the urban-

ization rate reached 89.2%, which was much higher than the national average of 46.4% 

across China [44]. Simultaneously, Xiamen is a hot summer and warm winter zone of 

coastal location that has a monsoonal humid subtropical climate, with mild winters and 

hot, rainy, and muggy summers. Rainfall is around 1200 millimeters per year, which is a 

little less rainy than the neighboring provinces (Zhejiang and Guangdong). The spring is 

from March to May and the hot season is in June, July, August, and September. The winter 

is from December to February. On average, the warmest month is July and the coolest 

months are December and January. The average annual maximum and minimum temper-

ature are 25.0 °C and 18.0 °C, respectively [45,46]. We found that UHE intensity increased 

with the increments of built-up areas in our previous study on Xiamen city. Meanwhile, 

built-up area had positively correlated with urban warming [44]. Because of the rapid 

urbanization and typical coastal city climate, Xiamen is ideal for the study of the relation-

ship between urban 3D compact form and UHE. The results can provide sustainable ur-

ban construction recommendations for similar coastal cities, which accommodate more 

than 50% of the world population [47]. In the present work, we expand upon our previous 

study area of Xiamen Island and cover a large part of the mainland. The four districts of 

Huli, Siming, Jimei, and Haicang, which are economic and political centers, and account 

for 74.89% of the total population of Xiamen, were chosen as the case study area. 
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Figure 1. Location of the study area. 

3. Research Design and Data Collection 

3.1. Indicator of Urban Compactness 

Over the past five decade, measurements for a compact city have been mainly based 

on the 2D form. To fill in the gap and develop measurement of urban compactness, the 

3D Compactness Index (VCI) and Normalized 3D Compactness Index (NVCI) have been 

proposed. These data were extracted by Remote Sensing (RS) and Geographic Information 

System (GIS) techniques. 

3.1.1. Normalized 2D Compactness Index (NCI) 

Thinh et al. proposed a quantitative measurement model (T model) to calculate urban 

compactness [33]. On the basis of GIS and urban land-use data, the T model overlays the 

grid cell of a certain size of urban land-use data to generate the basic data layer for model 

operation. As an example, Figure 2 shows the urban land-use data obtained from Landsat 

remote-sensing images, and the pixel size of the image is 30 m × 30 m. The grid cell size is 

60 m × 60 m, which depends on the scale of the study region area of the urban construction 

land [34]. The T model can measure the 2D spatial gravity between different parts of urban 

construction land. The T model is expressed as follows: 

CI =

∑ ∑
1
c

Z�Z�

d�(i, j)
�
���,���

�
���

N(N − 1)/2
 

(1)

where CI is the 2D Compactness Index; the stronger the spatial gravitation, the more com-

pact the urban form will be and the greater the CI is; hence, there is no range value of CI; 

i and j are two arbitrary grid cells in the study area; Zi and Zj are, respectively, areas of 

urban construction land (grey part in Figure 2) in urban grid cell i and j (i ≠ j); d (i, j) is the 

geometrical distance between the grid cell i and j (i ≠ j); and c is a constant (m2, to make 

the calculation result of CI non-dimensional). The value of c depends on the size of the 

region in which we calculate the 2D Compactness Index; for example, the c value is usu-

ally small when we calculate the CI of communities (c = 100 m2 in this study), while the c 

value will be large when we calculate the CI of the entire city or even a larger area. N is 

the total number of the urban construction land grid cells. 
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Figure 2. Grids in two-dimensional (2D) urban compactness model [34]. 

To offset the influence of the study area factor on the T model, the Normalized 2D 

Compactness Index (NCI) is presented as an improvement [34]. The Normalized 2D Com-

pactness Index is defined as the ratio of the actual urban construction land to the equiva-

lent circular land (Figure 3) [48]. It not only integrates various features of irregular urban 

form but also standardizes the calculation results, to compare compactness of different 

cities. Song et al. used NCI to research the relationships between urban commuting and 

urban form. The NCI model is expressed as follows [35]: 

NCI =
 CI

CI���

 (2)

where NCI is the Normalized 2D Compactness Index of which the value is between 0 and 

1, CI is the 2D Compactness Index, and CImax is the 2D Compactness Index of the equiva-

lent circularity, i.e., the 2D urban form is more compact as NCI will approach 1. 

 

Figure 3. Urban construction land and its equivalent circular land [34]. 

3.1.2. Normalized 3D Compactness Index (NVCI) 

The T model and NCI model are advanced measurements used to calculate 2D urban 

compactness. However, the realistic urban spatial form has a vertical dimension. To rem-

edy the shortcoming that 2D compactness does not express the actual spatial form of cities, 

we proposed the 3D Compactness Index (VCI), which improved the 2D compactness 

model and is also based on Newton's law of universal gravitation [41]. The VCI model can 

explain the total 3D spatial attractions of a city. A large VCI result indicates strong urban 

spatial attraction. The VCI model is expressed by Equation (3): 

VCI =

∑ ∑
1
c

V�V�

d�(i, j)
�
���,���

�
���

N(N − 1)/2
 

(3)

where VCI is the 3D Compactness Index of a specific urban space; a larger VCI indicates 

a more compact urban 3D form, hence there is no range value of VCI. Vi and Vj are, re-

spectively, volumes of urban buildings in urban cube I and cube j (i ≠ j), (i, j) is the geo-

metric distance between the centroids of urban cube i and cube j; the unit cube also de-

pends on the scale of the study region and the volume of the urban buildings (Figure 4); c 

is constant (m4, to make the calculation result of VCI non-dimensional). The value of c 
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depends on the size of the region in which we calculate the 3D Compactness Index; for 

example, the c value is usually small when we calculate the VCI of communities (c = 100 

m4 in this study) while the c value will be large when we calculate the VCI of the entire 

city or even a larger area. N is the total number of cubes [41]. 

 

Figure 4. Schematic diagram of the spatial cube division of three-dimensional (3D) urban space 

[41]. 

As shown in Formula (3), the VCI model is closely related to city scale. In order to 

eliminate errors caused by city scale differences, the Normalized 3D Compactness Index 

(NVCI) was proposed. We used a sphere as the maximum compactness form of 3D urban 

space and proposed the NVCI model. The Normalized 3D Compactness Index (NVCI) is 

calculated by the ratio of actual 3D urban spatial form to its equivalent sphere. The actual 

urban spatial form shares the same volume with its equivalent sphere (Figure 5). The com-

pactness of various cities or different scales of urban area can be compared using the Nor-

malized 3D Compactness Index (NVCI). The NVCI is given by: 

NVCI =
 VCI

VCI���

 (4)

where NVCI is the Normalized 3D Compactness Index and ranges between 0 and 1, while 

VCI is the 3D Compactness Index, and VCImax is the 3D Compactness Index of the equiv-

alent sphere; the closer the value of NVCI is to 1, the more compact the urban spatial form 

is [41]. 

 

Figure 5. Urban buildings and their equivalent volume sphere [41]. 

3.2. Calculation of NCI and NVCI 

We selected a typical coastal city, Xiamen, which is a subtropical city located in south-

eastern China, as the experimental area. The volumes of urban buildings that were used 

as factors of the VCI and NVCI models were combined with urban construction areas as 

well as building heights. We obtained the boundary of communities in Xiamen by vector-

ization method (i.e., using the polygon feature template in the Create Features window of 

Arc GIS to create polygons) based on GF-1 satellite remote-sensing images of Xiamen in 

2017. We then used the 2017 Pléiades 50 cm global high-resolution satellite imagery as a 

reference to proofread and adjust the boundaries of communities in order to obtain more 

accurate boundary data. Based on 2017 aerial imagery of the Xiamen land survey, we used 

the object-based image analysis techniques to delineate building footprints, while zonal 
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statistics was used to extract building height information. Then, we also proofread the 

buildings’ heights data through field surveys [49,50]. According to Formulas (3) and (4), 

we built an urban unit cube of 5 m × 5 m × 5 m and calculated the VCI and NVCI of each 

community by Python 2.7. Then, we also measured the average building height, building 

density, CI and NCI of all communities. Based on the above method and calculation re-

sults, we deleted the very small communities with only one building in order to ensure 

the accuracy of communities’ NVCI value. The experimental files comprised 841 commu-

nities (valid data) with different urban morphologies in Xiamen, southeastern China and 

were included in the final analysis (Figure 6). These communities are consistent with the 

boundary red line of residential communities, which is approved by the urban construc-

tion system. 

 

Figure 6. Distribution of typical communities and urban buildings. 

3.3. Retrieval of Land Surface Temperature 

The Landsat images we used were provided by the United States Geological Survey 

(https://www.usgs.gov/ accessed on 1 January 2021) for free. Although there are two ther-

mal infrared bands in the Landsat 8 Operational Land Imager-Thermal Infrared Sensor 

(OLI-TIRS) data, the land surface temperature (LST) can be accurately inversed only by 

band 10. As we know, the thermal imagery from Landsat sensors, provided with relatively 

high spatial resolution, is suitable for monitoring the urban thermal environment. The 

TIRS thermal bands of Landsat 8 were acquired at 100 m resolution, but were resampled 

to 30 m in the delivered data product, and could then meet the urban communities’ re-

search requirement [51]. 

The mono-window algorithm, an accurate method, was processed to retrieve the LST 

of Xiamen in the years 2017–2018. Five cloud-free Landsat 8 images were obtained for this 

study. They were acquired at approximately 10:43 a.m. (Beijing time) on 14 Apr, 15 Aug, 

2 Oct, and 21 Dec in 2017, and 11 Mar in 2018. Two steps were taken to retrieval LST: (1) 

converting the pixel values to at-sensor brightness temperatures; and (2) correcting for the 

spectral emissivity. Four parameters are critical for calculating LST: brightness tempera-

ture, ground emissivity, effective mean atmospheric temperature, and atmospheric trans-

mittance, which could be acquired by Radiometric Calibration, normalized difference 

vegetation index (NDVI) (http://atmcorr.gsfc.nasa.gov/ accessed on 25 May 2020) (Formu-

las (5)–(11)), 

� = �� (5)

� = (1 − �)[1 + (1 − �)�] (6)
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� = 1.031412 − 0.115367� (7)

� = 0.02644�� + 0.96356 (8)

where � and � are empirical equations, which are related to the land surface emissivity 

and atmospheric transmittance, ε is the land surface emissivity, �  is the total atmos-

pheric transmittance, and � is the total atmospheric water vapor content, which ranges 

from 1.6 to 3.0 [52]. 

�� = [
���� − �������

������� − �������

 (9)

���� = (���� − ����)/(���� + ����) (10)

where ��  is the vegetation proportion [53]; �������  and �������  are the maximum 

and minimum ���� values in the region, respectively; and ���� and ����  are the reflec-

tance values of the NIR and red channels (band 5, band 4, and for Landsat 8), respectively. 

��� =
�(1 − � − �) + [�(1 − � − �) + � + �] × �� − � × ��

�
− 237.15 (11)

�� =
��

�� (�� ��⁄ + 1)
 (12)

�� = ���� +
���� − ����

255
�� (13)

where ��� is the land surface temperature; �� is the effective mean atmospheric temper-

ature, which can be calculated from the near surface temperature during acquisition time 

of Landsat 8; and a and b are constant as −67.3554 and 0.4586, respectively, when the LST 

is between 0 °C to 70 °C [54]. �� is the effective brightness temperature at the sensor on 

remote-sensing satellite in Kelvin; ��  and ��  are empirical constants values. ��  is 

774.89 mWcm��sr��μm��; �� is 1321.08 K; �� is the spectral radiance at the sensor’s ap-

erture in Wm��sr��μm�� ; and ����  and ����  are the minimum and maximum radi-

ances that can be detected by the sensor, respectively. ����  and ���� can be found in the 

header text file of the Landsat 8 raw data. LST maps for five dates are shown in Figure 7. 

 

Figure 7. Land surface temperature (LST) images in five different dates. 

3.4. Geographical Detector Models Methods 

The geographical detector model (GeoD) is composed of interactive, factor, ecologi-

cal, and risk detectors, and is a spatial analysis model based on the theory of spatial het-

erogeneity and has been applied in many geographical and ecological studies [55]. It is 
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freely available from http://www.geodetector.org/ (accessed on 1 January 2021). In this 

study, the interactive detector was used to explore the interaction of influencing factors 

(X) on the heat accumulation (Y), which includes 2D architectural factors such as Building 

Density (BD); Normalized 2D Compactness Index (NCI); and 3D architectural factors such 

as Building Height (BH) and Normalized 3D Compactness Index (NVCI). The factor de-

tector was used to explore the impact of different explanatory variables X1, X2… on the 

research target, while the ecological detector was used to explore whether any two factors, 

X1 and X2, had different significant impacts on Y. Additionally, the risk detector was used 

to search for the range in which factors significantly affect LST variation, and q is the as-

sociation between Y and X, which is measured by [56]: 

� = 1 −
1

���
� ����

�

�

���

= 1 −
���

���
 (14)

where �� is the variance of Y; the study population of Y is composed of � strata (ℎ =

1, 2, 3 …  �); � stands for the number of units in the study population of Y. The strata of 

Y may exist already, or are constructed by classification or formed by laying Y over X, 

which consists of strata. Here, we used the K-means method to convert explanatory fac-

tors from actual values into category variables [57]. ��� and ��� is the within sum of 

squares and the total sum of squares, respectively. q∈[0,1]; the value of the q-statistic in-

dicates how much Y is interpreted by X. In detail, � = 0 indicates there is no association 

between Y and X, while � = 1 means that Y is completely determined by X. The higher the 

q value, the stronger is the spatially stratified heterogeneity of Y [58]. 

The q value of the interaction between the factors (X1, X2…) will be calculated by the 

interaction detector, namely q (X1 ∩ X2). According to the relationship between q (X1), q 

(X2), and q (X1 ∩ X2), the interaction can be divided into nonlinear weaken, single-factor 

nonlinear weaken, independent, double-factor enhancement, and nonlinear enhancement 

(Table 1) [57,59]. 

Table 1. Types of interaction between two variables. 

Relationship Interaction 

q (X1 ∩ X2) < Min [q (X1), q (X2)] nonlinear weaken (NW) 

Min[q(X1), q(X2)] < q (X1 ∩ X2) < Max [q (X1), q (X2)] 
single-factor nonlinear weaken 

(SNW) 

q (X1 ∩ X2) > Max [q (X1), q (X2)] double-factor enhancement (DE) 

q (X1 ∩ X2) = q (X1) + q (X2) independent (I) 

q (X1 ∩ X2) > q (X1) + q (X2) nonlinear enhancement (NE) 

4. Results 

4.1. Urban Building Characteristics 

Table 2 shows the statistical results for the different buildings in Xiamen. The build-

ing area was lowest in the Lianbanxi community, and increased from 0.044 hm2 to the 

highest value of 44.764 hm2 in the Guangjing community. Building height of the selected 

communities ranged from 1 floor to 38 floors, with an average of 9 floors, while the build-

ing density had an average of 35.781%, as compared to the highest value of 85.257% and 

the lowest of 10.198%. Based on these building characteristics, we chose a 5 × 5 m grid to 

calculate the 2D Compactness Index (CI). The average CI, CImax (the 2D Compactness In-

dex of the equivalent circle), and Normalized 2D Compactness Index (NCI) was 1.82 × 

10−3, 2.61 × 10−3, and 0.622, respectively. Similarly, the cubes were set to be 5 × 5 × 5 m3 to 

calculate the 3D Compactness Index (VCI), VCImax (the 3D Compactness Index of the 

equivalent sphere), and Normalized 3D Compactness Index (NVCI) of each community. 

The VCI, VCImax, and NVCI were an average of 0.016, 0.334 and 0.044, respectively. The 
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highest NCI was calculated in the Yisheng community, with a value 0.979, while the low-

est NVCI was in the Wenbin community (0.323), as shown in Figure 8. The community 

with maximum NCI did not have the maximum NVCI, which means that the most com-

pact area in two dimensions did not have similar compactness in three dimensions. 

 

Figure 8. (a) The building heights in communities with the maximum NVCI; (b) The building 

heights in communities with the minimum NVCI. 

Table 2. Statistics of urban building characteristics. 

 
Building 

Area (hm2) 

Building 

Height 

(Floor) 

Building 

Density 

(%) 

2D Compact Indexes 3D Compact Indexes 

CI CImax NCI VCI VCImax NVCI 

Mean 4.856 9 35.781 1.82 × 10−3 2.61 × 10−3 0.622 0.016 0.334 0.044 

Maximum 44.764 38 85.257 0.018 0.019 0.979 0.190 1.691 0.323 

Minimum 0.044 1 10.198 4.14 × 10−5 9.14 × 10−5 0.370 2.42 × 10−4 0.063 1.45 × 10−3 

We also used Building Height (BH) and Building Density (BD) to further explore how 

3D compactness influenced UHE. According to Xiamen City Planning Management Tech-

nical Regulations (2016) [60], the selected communities were divided into four types, 

namely low-rise and low-density (LL), low-rise and high-density (LH), high-rise and low-

density (HL), and high-rise and high-density (HH). In detail, buildings with a height of 

more than 6 floors were classified as high-rise, while those with a height of less than 6 

floors were classified as low-rise. The building density was divided into high-density and 

low-density buildings, with 30% as the boundary. Four typical types of urban morphology 

were selected for the experiment communities, whose building characteristics are pre-

sented in Table 3. For Compact Indexes, mean NCI was the greatest (0.660) in low-rise and 

high-density communities (LH) and lowest (0.531) in low-rise and low-density communi-

ties (LL), while mean NVCI was the greatest (0.061) in high-rise and high-density commu-

nities (HH) and lowest (0.014) in low-rise and low-density communities (LL). Those four 

types show that obvious heterogeneities exist among different building morphologies. 

Table 3. Statistics of building characteristics for four typical urban morphology types. 

Building 

Morphology 

Building Height 

(Floor) 

Average 

Building 

Density 

Average  

Building 

Area (hm2) 

2D Compact Indexes 3D Compact Indexes 

Mean Max Min CI CImax NCI VCI VCImax NVCI 

low-rise and 

low-density 

(LL) 

5 6 1 0.271 3.181 0.80 × 10−3 1.39 × 10−3 0.531 7.22 × 10−3 0.422 0.014 

low-rise and 

high-density 

(LH) 

5 6 1 0.461 2.462 0.30 × 10−2 4.24 × 10−3 0.660 2.39 × 10−2 0.446 0.049 

high-rise and 

low-density 

(HL) 

15 38 7 0.221 8.872 0.40 × 10−3 8.24 × 10−4 0.569 3.92 × 10−3 0.230 0.015 
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high-rise and 

high-density 

(HH) 

10 36 7 0.394 4.856 0.20 × 10−2 3.00 × 10−3 0.654 1.96 × 10−2 0.300 0.061 

4.2. Characteristics of Land Surface Temperature 

The mean LST of each urban community, which was calculated by Zonal Statistics of 

Spatial Analysis in Arc GIS, was used to represent the LST condition in an urban commu-

nity. In order to eliminate the impact from heterogeneities backgrounds, we subtracted 

the LST of each community on the later map from the earlier map to obtain the real LST 

variations of each community. In detail, we subtracted the 14 April 2017 communities’ 

LST map from the 15 August 2017 map, the 2 October 2017 map from the 15 August 2017 

map, the 21 December 2017 map from the 2 October 2017 map, and the 21 December 2017 

map from the 11 March 2018 map, [17]. We then accumulated all the LST variations from 

the five different dates to represent the total heat accumulation during the whole year 

(Figure 9a). Meanwhile, for seasonal LST, the average LST of the urban community plus 

the real seasonal LST variations of two dates will represent them. For example, we sub-

tracted the 15 August communities’ LST map from the 14 April map and added the aver-

age LST of communities on 15 August to represent the LST of the spring season, and so 

on (Figure 9b). 
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. 

Figure 9. Spatial distribution of the heat accumulation in each community of the study area, (a). 

Spatial distribution of the LST across four seasons in each community of the study area, (b). 

In detail, the LST of typical Xiamen communities in spring ranges from 28.1 °C to 

35.4 °C, with a mean temperature of 33.1 °C, a minimum LST of 38.5 °C, and a maximum 

of 44.4 °C in summer. The LST of autumn was reduced from 40.8 °C to 35.4 °C; however, 

the LST at the time of winter was relatively lower than that in other seasons, which ranges 

from 15.7 °C to 19.7 °C, with the mean temperature of 17.4 °C (Figure 9b). To that extent, 

the four images (Figure 9b) can typically represent the LST conditions in different seasons 

in Xiamen. Figure 9a shows that the total heat accumulation in the whole year ranged 

from 33.3 °C to 43.0 °C. The biggest heat accumulation during the period 2017–2018 was 

primarily located in the high-density areas of Xiamen, such as the central and eastern Huli 

district and the southern Jimei district. From the above, we could infer that the heat accu-

mulation has a close relation to the urban morphology of the study area. 

4.3. Urban 3D Compact Form Impacts on UHE 

4.3.1. Correlations between NCI, NVCI, and UHE 

Pearson Correlation analysis was used to explore the relationship between heat ac-

cumulation and urban compactness, which was indicated by two normalized compact in-

dexes, NCI and NVCI [61,62]. Figure 10 shows that the NCI and NVCI were positively 

correlated with heat accumulation at a significance level of 0.001. However, heat accumu-

lation had a stronger relationship with NVCI (R = 0.5087***) than with NCI (R = 0.3312***). 

This means that the 3D compact form is more helpful for exploring how urban compact 

morphology impacts on UHE. The Geographical detector (GeoD) was also adopted to ver-

ify the integrate impact between urban compact form and UHE. The GeoD factor detector 

indicated that the NVCI also had the most important impacts on heat accumulation (q = 

0.271), followed by BD (q = 0.196) and NCI (q = 0.101), and then BH (q = 0.016). In addition, 
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the GeoD ecological detector tested that there were significant difference in the influence 

of BH, BD, NCI, and NVCI on heat accumulation, as in ‘Y’ in Table 4. From these results, 

we can see that the urban 3D compact model (NVCI) integrated the horizontal and vertical 

elements of urban buildings, which is different from building density or building height 

and comprehensively reflects the impact of the urban 3D form on UHE. 

  

Figure 10. Relationship between heat accumulation and (a) NCI; (b) NVCI. 

Table 4. The influence power of urban morphology to heat accumulation and the significant test of 

the factor difference. 

 BH BD NCI NVCI 

q statistic 0.016 0.196 0.101 0.271 

BH     

BD Y    

NCI Y Y   

NVCI Y Y Y  

The GeoD interaction detector demonstrated double-factor enhancement among four 

selected factors (BH, BD, NCI, and NVCI). The effect from the interaction of building den-

sity (BD) with building height (BH) (BD∩ BH) was greater than that from the two sub-

factors individually (BD, BH). We used one simple equation, q (BD ∩ BH) = 0.199 > Max [q 

(X1), q (X2)] = 0.196, to describe this finding; here, ‘∩’ means interactions. We also found 

that, for NCI and BH, the relationship between them was similar, and was q (NCI ∩ BH) = 

0.115 > q (NCI, BH) = 0.016, 0.101. However, q (NCI ∩ BH) = 0.115 < q (NVCI) = 0.271 (Table 

5). These findings illustrate that the effects on heat accumulation would be enhanced 

when the NCI included BH. However, the interactions of NCI with BH were still weaker 

than the single factor of NVCI. NCI reflects the 2D compact form, which could be regarded 

as an index similar to building density. Building height is an indispensable part of urban 

morphology. Even combining NCI with BH, its integrated effect on heat accumulation 

was still not as strong as NVCI. It also reflects that NVCI is a synthesized indicator for 

UHE indication due to its 3D entities. 

Table 5. Results of Geo-Dector interaction detector. 

 BH BD NCI NVCI 

BH 0.016    

BD 0.199 DE 0.196   

NCI 0.115 DE 0.233 DE 0.101  

NVCI 0.278 DE 0.290 DE 0.298 DE 0.271 
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4.3.2. Relation of NVCI with UHE across Different Urban Morphology Types 

In order to further explore the driving mechanism of urban 3D compact morphology 

on UHE, we analyzed the correlation between NVCI and heat accumulation across differ-

ent urban morphology types [62]. This could also be used to further study how the indi-

vidual factors of urban compact form, such as building density and building height, im-

pact on the UHE. As shown in Table 6, there were specifically 404 H-H, 149 H-L, 162 L-H, 

and 126 L-L typical communities, with there being 553 high-rise and 288 low-rise commu-

nities, and 566 high-density and 275 low-density communities. 

Table 6. Numbers of four typical communities. 

 High-Dense Buildings Low-Dense Buildings Totality Number 

High-rise buildings H-H (404) H-L (149) 553 

Low-rise buildings L-H (162) L-L (126) 288 

Totality number 566 275 841 

The correlation between the average NVCI of four urban morphology types and heat 

accumulation was significant at a level of 0.01, with R2 value being 0.996. Figure 11e shows 

that, for low-rise communities, the heat accumulation increased by 1.6 °C when building 

density changed from low (27.1%) to high (46.1%), while, for high-rise communities, the 

heat accumulation also increased by 1.6 °C when building density changed from 22.1% to 

39.4%. Similarly, the heat accumulation increased by 0.2 °C with increasing building 

height levels in the low-density communities while, in the high-density communities, the 

heat accumulation also increased by 0.2 °C when building height shifted from low (5 

floors) to high (10 floors) (Table 7). We concluded that an increase in building density will 

lead to greater heat accumulation than that from building height. The results indicated 

that, compared with building height, building density was a major factor affecting the 

UHE. 

 

Figure 11. The top panel shows the four typical urban morphology types of LL, HL, LH, and HH 

(a–d); (e) Relationship between heat accumulation and average NVCI of four types. 
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Table 7. Heat accumulation in four typical urban morphology types. 

 Low-Rise  

Buildings 

High-Rise  

Buildings 

Low-Dense  

Buildings 

High-Dense 

Buildings 

Low-dense to High-dense 
1.6 °C 

(LL-LH) 

1.6 °C 

(HL-HH) 
  

Low-rise to High-rise   0.2 °C 

(LL-HL) 

0.2 °C 

(LH-HH) 

4.4. Correlations between Urban 3D Compact Form and UHE across Different Seasons 

We further calculated the Pearson Correlation between the NVCI and LST across four 

seasons to investigate the seasonal variations of impact of urban 3D compact form on UHE 

(Figure 12; Table 8). The correlation between NVCI and LST was most significant in au-

tumn, with the R value being 0.416 (P < 0.001), followed by summer, with the R value 

being 0.237 (P < 0.001). Meanwhile, NVCI was negatively correlated with LST in winter, 

with the R value being −0.332 (P < 0.001). 

  

  
  

Figure 12. Relationships between NVCI and LST in (a) spring; (b) summer; (c) autumn; (d) winter. 

Table 8. Relationships between NVCI and LST across four seasons. 

Season R-Value 

Spring −0.080 * 

Summer 0.237 *** 

Autumn 0.416 *** 

Winter −0.332 *** 

* Correlation is significant at the 0.05 level; *** Correlation is significant at the 0.001 level. 

4.5. Effect Range Detect of Urban 3D Compact Form Impacts on UHE 

The GeoD risk detector was used to detect the impact of explanatory factors between 

categories [63]. The results showed that NVCI had varying impacts on heat accumulation 

at different category levels. The impacts of 3D compactness on heat accumulation in-

creased gradually from level 3 (range, 0.016–0.035) to level 2 (range, 0.035–0.079), and then 

level 1 (range, 0.080–0.323), and the corresponding average building density and building 

height exhibited levels from 3 (31.84%, 8 floors) to 2 (41.44%, 8 floors), and then level 1 

(51.74%, 11 floors). Increasing the NVCI of an urban community from 0.016 to 0.323, which 
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is equivalent to increasing the average building density from 31.84% to 51.74% and aver-

age building height from 8 floors to 11 floors, would increase the heat accumulation by 

1.35 °C. This confirmed that, in terms of the urban 3D form, compact is not always better. 

This finding will facilitate sustainable urban form development by scientific urban design. 

5. Discussion 

Through affecting wind, solar radiation trapping, and shadowing effects, a 3D com-

pact form changes urban heating exchange and stocks, which are different from those only 

from land surface. Buildings act as blocks to reduce wind speed and alter wind profile in 

the canopy [64,65]. Moreover, high building envelopes affect the flow of sensible-heat flux, 

and the solar radiation processing varies accordingly [66,67]. The trapping of solar radia-

tion causes energy to be stored in the urban building canyon as buildings become higher 

and streets narrower [68]. These have been confirmed to be the controlling factors in the 

relationship between the urban 3D compact form and UHE. Hence, a 3D compact form 

leads to prominent UHE stress due to its nature, more so than 2D compactness.  

The impact of urban morphology on canopy temperature variations, mostly through 

radiation shadowing and trapping, has been well described [69,70], as has the heat storage 

[71,72]. In this study, because large spatial coverage air temperature measurements are 

not available, we used the land surface temperature (LST) from satellite images to discuss 

the impact of urban 3D compactness on the temperature variation. 

Here we use a simple conceptual energy balance model to explain the observed cor-

relations between LST and morphology. The surface temperatures, T, is determined by 

the surface energy balance [73,74]: 

�
��

��
= ���−��� + ��−��−��  (15)

On the left hand, C is the effective thermal mass that is calculated as the production 

of density, ��, specific heart, ��, effective depth, ��, and the total surface area, �. 

� = ������� (16)

On the right hand, ��� is the solar short-wave radiation at the surface, ��� is the 

outgoing long-wave radiation, ��  is the anthropogenic heat, and ��  and ��  are sensi-

ble heat flux and latent heat flux, respectively. 

In this study, the LST mainly consists of the temperature from the horizontal surfaces, 

i.e., the ground and roof, while the vertical surfaces are usually excluded (Figure 13). 

��� = �� ∗ ������
+ (1 − ��) ∗ ��_������ (17)

 

Figure 13. Simple schematic depiction of the main energy exchange fluxes comprising the surface 

energy balance of roof and urban canyon facets (a) by summer and (b) by winter. The structure of 

an urban canopy model, which simulates exchanges at street, wall, and roof surfaces representa-

tive of parts of a city. 
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As the surface area for the total urban canopy (ground and wall) are larger than the 

roof area, this will result in a much larger thermal mass. Together with the shading effect, 

the surface temperature in the roof, ��_����, is usually higher than at the ground, ��_������  

in the daytime. At night, however, due to its large sky view factor and stronger wind in 

the roof, which result in stronger nocturnal cooling through long wave radiation and con-

vection, ��_���� is usually lower than the ground, ��_������. Thus, when increasing the 

building density (BD), daytime LST would be higher, which is resulted from an overall 

effect of canyon geometry on solar radiation. Our results were consistent with the findings 

of Guo et al., who found that building density had a stronger effect than building height 

on the LST [17]. The difference was that they believed that an urban morphology of a 

medium building height and lower density yielded a higher heat accumulation. Moreo-

ver, the land cover of the ground surface also plays a role. For instance, compared with 

impervious surfaces, the green areas would absorb less solar radiation due to relatively 

higher albedo and stronger cooling latent heat cooling, and ��_������ would be less. Be-

sides, there are other meteorological and geographical factors, such as cloud, rainfall, an-

thropogenic heat, etc., that have an impact on the surface energy balance as well as the 

LST. However, any radiometer at a fixed position has a biased view when observing a 

convoluted, three-dimensional surface such as an urban canopy. A methodology based 

on a panoramic time sequential thermography data set is important for the calculation of 

the complete surface temperature [75]. Surface emissivity over urban areas is also critical 

in surface temperature estimation and is related to energy budget. In order to match urban 

studies, improving the estimation of urban surface emissivity is essential [76]. Hence, the 

exact mechanism between urban 3D compact form and LST and the contributions of these 

factors may need further study.  

These could also explain the seasonal variations between NVCI and UHE in Section 

4.4. The seasonal discrepancies in the impact of urban 3D compactness on LST is largely 

subject to the interactions between canyon geometry and incoming solar radiation, i.e., 

radiation trapping and shadowing effects that are related to the geographic location and 

solar angle. In general, increasing the compactness can enhance both the shadowing and 

the trapping effects. The trapping effect supports the UHE, whereas shadowing effects 

reduce the UHE, resulting in a nonlinear impact of canyon geometry and solar angle on 

UHE [69,70]. 

This study was conducted in Xiamen, whose latitude is around 24° N and experiences 

weather of warm winters and hot summers. Compared with the spring and winter sea-

sons, there are sunnier and higher temperature days in summer and autumn [45]. More-

over, the solar angle is higher than in spring and winter, which results in less shadowing 

effect and leads to higher level solar radiation reaching both roof and ground. However, 

in winter, relatively large shadows will cause much more solar radiation to be absorbed 

by the walls and less by the ground. Therefore, a more compact 3D form with larger 

shadow areas will lead to lower ground temperatures during the winter (Figure 13). Thus, 

a positive correlation between urban 3D compactness and LST was observed in warm 

seasons, while there was a negative correlation in cold seasons. 

Interestingly, the correlation between an urban 3D compact form and LST is higher 

in autumn than in summer because, in autumn, the solar angle is relatively lower than 

that in the summer. Therefore, the solar radiation will reach, not only the ground, but also 

the walls, and more radiation will be trapped in the urban canyon and cause much more 

energy to be stored. Therefore, the 3D compact form has more prominent UHE stress in 

autumn than other seasons due to its horizontal and vertical element integration. Besides, 

there are other geographical and meteorological factors, such as vegetation cover, anthro-

pogenic heat, cloud, rainfall, etc., that have a strong seasonal variation and impact on the 

surface energy balance as well as the LST. For example, some particular combinations of 

impervious surfaces and tree cover densities are responsible for intensifying the surface 

urban heating significantly, with extreme climate conditions at critical areas [14]. These 

may result in a more prominent UHE stress in autumn than in other seasons. However, 
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the dense time series of LST could have convincible seasonal LST characteristics. We agree 

that the mechanism relating to the urban 3D compact form and LST in different seasons 

needs further study. 

6. Conclusions and Future Work 

In this study, we adopted the Normalized 3D Compactness Index (NVCI) to quantify 

the urban 3D form of typical urban communities within different regions of Xiamen. The 

effects of the NCI and NVCI on temporal and heat accumulation were then examined 

across LST that was derived from Landsat 8 imagery. Pearson Correlation and Geo-De-

tector were used to explore the interaction of influencing architectural factors on the UHE, 

as well as the driving mechanism of the urban 3D compact form and UHE across different 

urban morphology types and seasons. We reached the following conclusions: 

(1) On the whole, both 2D compactness and 3D compactness had a positive effect on the 

UHE. Three-dimensional compactness contributed the most, whereas the corre-

sponding contributions from building density, 2D compactness, and building height 

decreased gradually. Compared with individual urban form construction elements, 

the 3D compact form has prominent UHE stress due to its nature. Even combing 2D 

compactness with building height, the integrated effect on UHE was still not as 

strong as the function from 3D compactness. It reflected that the urban 3D compact 

form was helpful for UHE impact due to its land cover and vertical space integration. 

It will be more useful than only considering building density or building height for 

further research into the driving mechanism between the urban 3D compact form 

and the UHE and other related environmental effects in the future. 

(2) For the driving mechanism of the urban 3D compact form on UHE, the 3D structure 

and spatial pattern of urban buildings affect the wind environment, radiation trap-

ping, and shadowing effects. The driving process of the urban 3D form on UHE was 

further proved by different urban morphology types. Individually, building density 

had a greater effect on UHE than building height. Despite this, the vertical scale 

should not be ignored due to the enhanced UHE when including the two factors of 

‘height’ and ‘density’. 

(3) Temporal and spatial UHE heterogeneity is driven by a 3D compact form. In areas 

with warm winters and hot summers, a positive correlation between urban 3D com-

pactness and LST was observed in the warm season, while a negative correlation was 

observed in the cold season. The 3D compact form has more prominent UHE stress 

in autumn than other seasons due to its horizontal and vertical element integration, 

as well as radiation trapping effects. 

(4) The Normalized 3D Compactness Index (NVCI) levels were accessed with high con-

fidence to reveal that dominant factors in special categories had a high ability to in-

crease heat accumulation. Increasing the 3D compactness of an urban community 

from level 3 to level 1 (0.016–0.323) would increase the heat accumulation by 1.35 °C, 

which is also equivalent to increasing the average building density from 31.84% to 

51.74%, or increasing average building height from 8 floors to 11 floors. This means 

that the compact urban 3D form is not always better. A too compact form will 

strengthen UHE. 

Although our research confirmed that the urban 3D compact form has a significant 

effect on the UHE, some limitation still exits: (1) For the retrieval of LST, the satellite sen-

sors do not measure the complete surface temperature. It would be more accurate to use 

a methodology that could be applied to simulate the measurement bias of different remote 

sensors when inferring longwave emittance and surface temperature of a convoluted, 

three-dimensional urban surface [75]. Because NDVI emissivity corrections for LST are 

not suitable for urban studies, how the urban 3D form affects the land surface emissivity 

is worth discussing, particularly topics such as improving the estimation of urban surface 

emissivity based on spectral mixture analysis [76]. Moreover, the dense time series of LST 
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is also useful for obtaining convincible conclusions on LST characteristics. (2) The LST is 

different from the air temperature, which has a great influence on determining human 

thermal comfort in urban areas [17]. Thus, high resolution on-site air temperature obser-

vation and numerical modelling data would be helpful to further verify the obtained re-

sults from remote-sensing images. (3) Apart from the buildings and their geometry, other 

urban landscape elements such as vegetated areas (starting from grass to trees) also play 

a potential role in the urban heat environment (UHE). Urban tree and green infrastruc-

tures are now widely considered as an effective way to mitigate urban heating. An inte-

gration of 3D building geometry and green areas and infrastructures would be essential 

to the holistic approach for improving the urban heat environment. (4) The proposed 

NVCI is applicable at both community and urban scales. The scale of this study was lim-

ited to the urban community level. In future, a comparative study of different urban form 

indictors (e.g., NVCI, SVF) in China's larger cities and even mega-cities throughout the 

world under different climatic conditions, together with different variables (tree cover, 

water body…), would be of great interest in order to explore their impact on urban heat 

environment. In addition, we believe the urban 3D compact model could be considered 

in many other areas of research, such as the urban 3D compact form influencing urban 

atmospheric pollution transfer [77]. It is also important to provide scientific guidance for 

climate response urban planning in cities in terms of different latitudes and climatic back-

grounds, promoting a healthier and more sustainable urban habitat. 

Author Contributions: Conceptualization, H.Y. (Han Yan) and H.Y. (Hong Ye); methodology, H.Y. 

(Han Yan) and G.Z.; software, H.Y. (Han Yan) and G.Z.; validation, C.S.; formal analysis, H.Y.(Han 

Yan) and H.Y. (Hong Ye); investigation, H.Y. (Han Yan) and K.W.; resources, H.Y. (Hong Ye) and 

T.L.; writing—original draft preparation, H.Y. (Han Yan) and H.Y. (Hong Ye); writing—review and 

editing, H.Y. (Han Yan) and K.W.; visualization, H.Y. (Han Yan) and X.H.; project administration, 

H.Y. (Hong Ye) and T.L.; funding acquisition, H.Y. (Hong Ye) and T.L. All authors have read and 

agreed to the published version of the manuscript. 

Funding: National Natural Science Foundation of China, grant numbers 41771570, 41771573 and 

41871167. The International Partnership Program of Chinese Academy of Sciences, grant number 

132c35kysb2020007. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author. 

Acknowledgments: We thank the United States Geological Survey (https://www.usgs.gov/ ac-

cessed on 25 May 2020) and the Geospatial Data Cloud site (http://www.gscloud.cn accessed on 25 

May 2020) for providing Landsat imagery free of charge. We are also grateful to reviewers for their 

helpful comments and suggestions for improving the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. United Nations. World Urbanization Prospects: The Revision; United Nations: New York, NY, USA, 2018. 

2. Ye, H.; Wang, K.; Huang, S.; Chen, F.; Xiong, Y.; Zhao, X. Urbanisation effects on summer habitat comfort: A case study of three 

coastal cities in southeast China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 317–323. 

3. Dantzig, G.B. The ORSA New Orleans address on compact city. Manag. Sci. 1973, 19, 1151–1161. 

4. Han, S.; Qin, B. The Compact City and Sustainable Urban Development in China. Urban Plan. Int. 2004, 19, 23–27. 

5. Dempsey, N. Revisiting the Compact City? Built Environ. 2010, 36, 5–8. 

6. Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. 

7. Mueller, N.; Rojas-Rueda, D.; Khreis, H.; Cirach, M.; Andrés, D.; Ballester, J.; Bartoll, X.; Daher, C.; Deluca, A.; Echave, C.; et al. 

Changing the urban design of cities for health: The superblock model. Environ. Int. 2019, 134, 105132. 

8. Mouratidis, K. Compact city, urban sprawl, and subjective well-being. Cities 2019, 92, 261–272. 

9. Gaigné, C.; Riou, S.; Thisse, J. Are compact cities environmentally friendly? J. Urban Econ. 2012, 72, 123–136. 

10. Peng, F.; Wong, M.S.; Ho, H.C.; Nichol, J.; Chan, P.W. Reconstruction of historical datasets for analyzing spatiotemporal influ-

ence of built environment on urban microclimates across a compact city. Build. Environ. 2017, 123, 649–660. 



Remote Sens. 2021, 13, 1067 21 of 23 
 

 

11. Wang, J.; Huang, B.; Fu, D.; Atkinson, P. Spatiotemporal Variation in Surface Urban Heat Island Intensity and Associated De-

terminants across Major Chinese Cities. Remote Sens. 2015, 7, 3670–3689. 

12. Lu, M.; Lai, J. Review on carbon emissions of commercial buildings. Renew. Sustain. Energy Rev. 2020, 119, 109545. 

13. Ye, H.; He, X.; Song, Y.; Li, X.; Zhang, G.; Lin, T.; Xiao, L. A sustainable urban form: The challenges of compactness from the 

viewpoint of energy consumption and carbon emission. Energy Build. 2015, 93, 90–98. 

14. Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan 

cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. 

15. Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. 

16. Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. 

17. Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the impact of urban morphology heterogeneity on land surface 

temperature in Guangzhou, China. Environ. Environ. Modell. Softw. 2016, 84, 427–439. 

18. Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: evidence from 

the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. 

19. Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on 

land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. 

20. Peng, J.; Ma, J.; Liu, Q.; Liu, Y.; Hu, Y.; Li, Y.; Yue, Y. Spatial-temporal change of land surface temperature across 285 cities in 

China: An urban-rural contrast perspective. Sci. Total Environ. 2018, 635, 487–497. 

21. Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of 

urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. 

22. Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature 

in urban areas. Remote Sens. Environ. 2018, 215, 255–267. 

23. Liu, Y.; Peng, J.; Wang, Y. Relationship between urban heat island and landscape patterns: From city size and landscape com-

position to spatial configuration. Acta Ecol. Sin. 2017, 37, 7769–7780. 

24. Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. 

25. Huang, J.; Jones, P.; Zhang, A.; Peng, R.; Li, X.; Chan, P. Urban Building Energy and Climate (UrBEC) simulation: Example 

application and field evaluation in Sai Ying Pun, Hong Kong. Energy Build. 2019, 207, 109580. 

26. Yang, J.; Bou-Zeid, E. Should Cities Embrace Their Heat Islands as Shields from Extreme Cold. J. Appl. Meteorol. Clim. 2018, 57, 

1309–1320. 

27. Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The Impacts of Rapid Urbanization on the Thermal Environment: A 

Remote Sensing Study of Guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. 

28. Galster, G.; Hanson, R.; Ratcliffe, M.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling Sprawl to the Ground: Defining and 

Measuring an Elusive Concept. Hous. Policy Debate 2001, 12, 681–717. 

29. Tsai, Y. Quantifying Urban Form: Compactness versus ‘Sprawl’. Urban Stud. 2005, 42, 141–161. 

30. Zhao, F.; Tang, L.; Qiu, Q.; Wu, G. The compactness of spatial structure in Chinese cities: measurement, clustering patterns and 

influencing factors. Ecosyst. Health Sustain. 2020, 6, 1743763. 

31. Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression 

model. Sci. Total Environ. 2018, 634, 696–704. 

32. Chun, B.; Guldmann, J.M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. 

Urban Plan. 2014, 125, 76–88. 

33. Thinh, N.X.; Arlt, G.; Heber, B.; Hennersdorf, J.; Lehmann, I. Evaluation of urban land-use structures with a view to sustainable 

development. Environ. Impact Assess. Rev. 2002, 22, 475–492. 

34. Zhao, J.; Song, Y.; Shi, L.; Tang, L. Study on the compactness assessment model of urban spatial form. Acta Ecol. Sin. 2011, 31, 

6338–6343. 

35. Song, Y.; Shao, G.; Song, X.; Liu, Y.; Pan, L.; Ye, H. The Relationships between Urban Form and Urban Commuting: An Empirical 

Study in China. Sustainability 2017, 9, 1150. 

36. Schwarz, N.; Manceur, A.M. Analyzing the Influence of Urban Forms on Surface Urban Heat Islands in Europe. J. Urban Plan. 

Dev. 2015, 141, A4014003. 

37. Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. (UK) 2017, 7, 

4791. 

38. Gyenizse, P.; Bognár, Z.; Czigány, S.; Elekes, T. Landscape shape index, as a potencial indicator of urban development in Hun-

gary. Landsc. Environ. 2014, 8, 78–88. 

39. Guerri, G.; Crisci, A.; Messeri, A.; Congedo, L.; Munafo, M.; Morabito, M. Thermal Summer Diurnal Hot-Spot Analysis: The 

Role of Local Urban Features Layers. Remote Sens. 2021, 13, 538. 

40. Zheng, Z.; Zhou, W.; Wang, J.; Hu, X.; Qian, Y. Sixty-Year Changes in Residential Landscapes in Beijing: A Perspective from 

Both the Horizontal (2D) and Vertical (3D) Dimensions. Remote Sens.  2017, 9, 992. 

41. Hu, X.; Yan, H.; Wang, D.; Zhao, Z.; Zhang, G.; Lin, T.; Ye, H. A Promotional Construction Approach for an Urban Three-

Dimensional Compactness Model-Law-of-Gravitation-Based. Sustainability 2020, 12, 6777. 

42. Wu, X.; Zhang, L.; Zang, S. Examining seasonal effect of urban heat island in a coastal city. PLoS ONE 2019, 14, e217850. 

43. Wu, T.; Tang, L.; Chen, H.; Wang, Z.; Qiu, Q. Application of Source-Sink Landscape Influence Values to Commuter Traffic: A 

Case Study of Xiamen Island. Sustainability 2017, 9, 2366. 



Remote Sens. 2021, 13, 1067 22 of 23 
 

 

44. Xiamen Municipal Bureau of Statistics; National Bureau of Statistics. Yearbook of Xiamen Special Economic Zone; China Statistics 

Press: Beijing, China, 2019. 

45. Tang, L.; Zhao, Y.; Yin, K.; Zhao, J. Xiamen. Cities 2013, 31, 615–624. 

46. Rubel, F.; Kottek, M. Observed and projected climate shifts 1901-2100 depicted by world maps of the Koppen-Geiger climate 

classification. Meteorol. Z. 2010, 19, 135–141. 

47. Van Coppenolle, R.; Temmerman, S. A global exploration of tidal wetland creation for nature-based flood risk mitigation in 

coastal cities. Estuar. Coast. Shelf Sci. 2019, 226, 106262. 

48. Liu, Y.; Arp, H.P.; Song, X.; Song, Y. Research on the relationship between urban form and urban smog in China. Environ. Plan. 

B Plan. Des. 2016, 44, 328–342. 

49. Zhang, S.; Han, F.; Bogus, S.M. Building Footprint and Height Information Extraction from Airborne LiDAR, Aerial Imagery, 

and Object-based Image Analysis. In Construction Research Congress 2020: Computer Applications; American Society of Civil En-

gineers: Reston, VA, USA, 2020. 

50. Ural, S.; Hussain, E.; Shan, J. Building population mapping with aerial imagery and GIS data. Int. J. Appl. Earth Obs. 2011, 13, 

841–852. 

51. Chen, F.; Yang, S.; Yin, K.; Chan, P. Challenges to quantitative applications of Landsat observations for the urban thermal envi-

ronment. J. Environ. Sci. China 2017, 59, 80–88. 

52. Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 

313–329. 

53. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 

2004, 90, 434–440. 

54. Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and 

its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. 

55. Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assess-

ment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. 

56. Ye, H.; Hu, X.; Ren, Q.; Lin, T.; Li, X.; Zhang, G.; Shi, L. Effect of urban micro-climatic regulation ability on public building 

energy usage carbon emission. Energy Build. 2017, 154, 553–559. 

57. Hu, Y.; Wang, J.; Li, X.; Ren, D.; Zhu, J. Geographical Detector-Based Risk Assessment of the Under-Five Mortality in the 2008 

Wenchuan Earthquake, China. PLoS ONE 2011, 6, e21427. 

58. Zhang, J.; Yu, L.; Li, X.; Zhang, C.; Shi, T.; Wu, X.; Yang, C.; Gao, W.; Li, Q.; Wu, G. Exploring Annual Urban Expansions in the 

Guangdong-Hong Kong-Macau Greater Bay Area: Spatiotemporal Features and Driving Factors in 1986–2017. Remote Sens. 2020, 

12, 2615. 

59. Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Ecol. Sin. 2017, 72, 116–134. 

60. Xiamen Municipal Bureau of Natural Resources and Planning. Xiamen City Planning Management Technical Regulations; Xiamen 

Municipal Bureau of Natural Resources and Planning: Xiamen, China, 2010. 

61. Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal con-

ditions. J. Clean. Prod. 2018, 177, 115–123. 

62. Scarano, M.; Mancini, F. Assessing the relationship between sky view factor and land surface temperature to the spatial resolu-

tion. Int. J. Remote Sens. 2017, 38, 6910–6929. 

63. Ye, H.; Sun, C.; Wang, K.; Zhang, G.; Lin, T.; Yan, H. The role of urban function on road soil respiration responses. Ecol. Indic. 

2018, 85, 271–275. 

64. Unger, J. Intra-urban relationship between surface geometry and urban heat island: Review and new approach. Clim. Res. 2004, 

27, 253–264. 

65. Caton, F.; Britter, R.E.; Dalziel, S. Dispersion mechanisms in a street canyon. Atmos. Environ. 2003, 37, 693–702. 

66. Emmanuel, R.; Rosenlund, H.; Johansson, E. Urban shading—A design option for the tropics? A study in Colombo, Sri Lanka. 

Int. J. Climatol. 2007, 27, 1995–2004. 

67. Eliasson, I. Urban nocturnal temperatures, street geometry and land use. Atmos. Environ. 1996, 30, 379–392. 

68. Yang, X.; Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface 

temperature. Build. Environ. 2015, 90, 146–156. 

69. Theeuwes, N.; Steeneveld, G.; Ronda, R.J.; Heusinkveld, B.; Hove, B.; Holtslag, B. Seasonal Dependence of the Urban Heat 

Island on the Street Canyon Aspect Ratio. Q. J. R. Meteor. Soc. 2014, 140, 2197–2210. 

70. Song, J.; Wang, Z. Interfacing the Urban Land-Atmosphere System Through Coupled Urban Canopy and Atmospheric Models. 

Bound. Layer Meteorol. 2015, 154, 427–448. 

71. Wang, K.; Li, Y.; Li, Y.; Lin, B. Stone forest as a small-scale field model for the study of urban climate. Int. J. Climatol. 2018, 38, 

3723–3731. 

72. Chen, G.; Wang, D.; Wang, Q.; Li, Y.; Wang, X.; Hang, J.; Gao, P.; Ou, C.; Wang, K. Scaled outdoor experimental studies of urban 

thermal environment in street canyon models with various aspect ratios and thermal storage. Sci. Total Environ. 2020, 726, 138147. 

73. Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. 

74. Wang, K.; Li, Y.; Wang, Y.; Yang, X. On the asymmetry of the urban daily air temperature cycle. J. Geophys. Res. Atmos. 2017, 

122, 5625–5635. 



Remote Sens. 2021, 13, 1067 23 of 23 
 

 

75. Adderley, C.; Christen, A.; Voogt, J.A. The effect of radiometer placement and view on inferred directional and hemispheric 

radiometric temperatures of an urban canopy. Atmos. Meas. Tech. 2015, 8, 2699–2714. 

76. Mitraka, Z.; Chrysoulakis, N.; Kamarianakis, Y.; Partsinevelos, P.; Tsouchlaraki, A. Improving the estimation of urban surface 

emissivity based on sub-pixel classification of high resolution satellite imagery. Remote Sens. Environ. 2012, 117, 125–134. 

77. Abbassi, Y.; Ahmadikia, H.; Baniasadi, E. Prediction of pollution dispersion under urban heat island circulation for different 

atmospheric stratification. Build. Environ. 2020, 168, 106374. 


